Skip to main content

Abstract

The energy industry is experiencing significant changes in terms of sustainability and competition, primarily driven by the introduction of renewable energy targets and emission limits. Demand response is a potential solution to reduce the critical peak; however, its implementation in industries can be challenging due to their production requirements. Technology enablers such as digital twin technology can enhance energy flexibility and optimize manufacturing and service processes. In this study, we aim to develop a framework that can help the manufacturing industry to optimise industrial demand response services and achieve a seamless interaction of different layers such as the physical, data infrastructure, digital twin, management, and aggregator. A systematic literature review and workshops were conducted to identify key technologies, decision areas and methods to enable both manufacturing and energy flexibility to reach demand response. Based on the results, an energy-flexible framework for manufacturing industries was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission: The European Green Deal. Brussels (2019)

    Google Scholar 

  2. Sarkar, B., Mridha, B., Pareek, S., Sarkar, M., Thangavelu, L.: A flexible biofuel and bioenergy production system with transportation disruption under a sustainable supply chain network. J. Clean. Prod. 317, 128079 (2021). https://doi.org/10.1016/j.jclepro.2021.128079

    Article  Google Scholar 

  3. Lund, P.D., Lindgren, J., Mikkola, J., Salpakari, J.: Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 45, 785–807 (2015). https://doi.org/10.1016/j.rser.2015.01.057

    Article  Google Scholar 

  4. Nižetić, S., Arıcı, M., Hoang, A.T.: Smart and sustainable technologies in energy transition. J. Clean. Prod. 389, 135944 (2023). https://doi.org/10.1016/j.jclepro.2023.135944

    Article  Google Scholar 

  5. Huang, W., Zhang, N., Kang, C., Li, M., Huo, M.: From demand response to integrated demand response: review and prospect of research and application. Prot Control Mod Power Syst. 4, 12 (2019). https://doi.org/10.1186/s41601-019-0126-4

    Article  Google Scholar 

  6. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 94, 3563–3576 (2018). https://doi.org/10.1007/s00170-017-0233-1

    Article  Google Scholar 

  7. Fragapane, G., Eleftheriadis, R., Powell, D., Antony, J.: A global survey on the current state of practice in Zero Defect Manufacturing and its impact on production performance. Comput. Ind. 148, 103879 (2023). https://doi.org/10.1016/j.compind.2023.103879

    Article  Google Scholar 

  8. Liu, Y., Zhang, Y., Ren, S., Yang, M., Wang, Y., Huisingh, D.: How can smart technologies contribute to sustainable product lifecycle management? J. Clean. Prod. 249, 119423 (2020). https://doi.org/10.1016/j.jclepro.2019.119423

    Article  Google Scholar 

  9. Zhang, G., Chen, C.-H., Liu, B., Li, X., Wang, Z.: Hybrid sensing-based approach for the monitoring and maintenance of shared manufacturing resources. Int. J. Prod. Res. 0, 1–19 (2021). https://doi.org/10.1080/00207543.2021.2013564

  10. Tayyab, M., Habib, M.S., Jajja, M.S.S., Sarkar, B.: Economic assessment of a serial production system with random imperfection and shortages: A step towards sustainability. Comput. Ind. Eng. 171, 108398 (2022). https://doi.org/10.1016/j.cie.2022.108398

    Article  Google Scholar 

  11. Papaefthymiou, G., Haesen, E., Sach, T.: Power system flexibility tracker: indicators to track flexibility progress towards high-RES systems. Renewable Energy 127, 1026–1035 (2018). https://doi.org/10.1016/j.renene.2018.04.094

    Article  Google Scholar 

  12. Irena, H.: Demand-Side Flexibility for Power Sector Transformation (2019)

    Google Scholar 

  13. Jordehi, A.R.: Optimisation of demand response in electric power systems, a review. Renew. Sustain. Energy Rev. 103, 308–319 (2019)

    Article  Google Scholar 

  14. D’Ettorre, F., et al.: Exploiting demand-side flexibility: State-of-the-art, open issues and social perspective. Renew. Sustain. Energy Rev. 165, 112605 (2022)

    Article  Google Scholar 

  15. Pinson, P., Madsen, H.: Benefits and challenges of electrical demand response: a critical review. Renew. Sustain. Energy Rev. 39, 686–699 (2014)

    Article  Google Scholar 

  16. Gils, H.C.: Assessment of the theoretical demand response potential in Europe. Energy 67, 1–18 (2014). https://doi.org/10.1016/j.energy.2014.02.019

    Article  Google Scholar 

  17. Heffron, R., Körner, M.-F., Wagner, J., Weibelzahl, M., Fridgen, G.: Industrial demand-side flexibility: A key element of a just energy transition and industrial development. Appl. Energy 269, 115026 (2020)

    Article  Google Scholar 

  18. Leinauer, C., Schott, P., Fridgen, G., Keller, R., Ollig, P., Weibelzahl, M.: Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation. Energy Policy 165, 112876 (2022)

    Article  Google Scholar 

  19. Lashmar, N., Wade, B., Molyneaux, L., Ashworth, P.: Motivations, barriers, and enablers for demand response programs: A commercial and industrial consumer perspective. Energy Res. Soc. Sci. 90, 102667 (2022)

    Article  Google Scholar 

  20. Siddiquee, S.S., Howard, B., Bruton, K., Brem, A., O’Sullivan, D.T.: Progress in demand response and it’s industrial applications. Frontiers in Energy Research. 9, 673176 (2021)

    Article  Google Scholar 

  21. Söder, L., et al.: A review of demand side flexibility potential in Northern Europe. Renew. Sustain. Energy Rev. 91, 654–664 (2018)

    Article  Google Scholar 

  22. Ma, S., Zhang, Y., Liu, Y., Yang, H., Lv, J., Ren, S.: Data-driven sustainable intelligent manufacturing based on demand response for energy-intensive industries. J. Clean. Prod. 274, 123155 (2020)

    Article  Google Scholar 

  23. Kelley, M.T., Baldick, R., Baldea, M.: Demand response operation of electricity-intensive chemical processes for reduced greenhouse gas emissions: application to an air separation unit. ACS Sustai. Chem. Eng. 7, 1909–1922 (2018)

    Article  Google Scholar 

  24. Ramin, D., Spinelli, S., Brusaferri, A.: Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process. Appl. Energy 225, 622–636 (2018)

    Article  Google Scholar 

  25. Stede, J., Arnold, K., Dufter, C., Holtz, G., von Roon, S., Richstein, J.C.: The role of aggregators in facilitating industrial demand response: Evidence from Germany. Energy Policy 147, 111893 (2020)

    Article  Google Scholar 

  26. Yu, W., Patros, P., Young, B., Klinac, E., Walmsley, T.G.: Energy digital twin technology for industrial energy management: Classification, challenges and future. Renew. Sustain. Energy Rev. 161, 112407 (2022)

    Article  Google Scholar 

  27. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Quarterly 26, xiii–xxiii (2002)

    Google Scholar 

  28. Tricco, A.C., et al.: PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann. Intern. Med. 169, 467–473 (2018)

    Article  Google Scholar 

  29. Abdulsalam, K.A., Adebisi, J., Emezirinwune, M., Babatunde, O.: An overview and multicriteria analysis of communication technologies for smart grid applications. e-Prime - Advances in Electrical Engineering. Electronics and Energy 3 (2023). https://doi.org/10.1016/j.prime.2023.100121

  30. Yoon, S.: In situ modeling methodologies in building operation: A review. Building and Environment 230 (2023). https://doi.org/10.1016/j.buildenv.2023.109982

  31. Ye, Z., Huang, W., Huang, J., He, J., Li, C., Feng, Y.: Optimal scheduling of integrated community energy systems based on twin data considering equipment efficiency correction models. Energies 16 (2023). https://doi.org/10.3390/en16031360

  32. Li, Y., Tao, Q., Gong, Y.: Digital twin simulation for integration of blockchain and internet of things for optimal smart management of PV-based connected microgrids. Sol. Energy 251, 306–314 (2023). https://doi.org/10.1016/j.solener.2023.01.013

    Article  Google Scholar 

  33. Pan, M., Xing, Q., Chai, Z., Zhao, H., Sun, Q., Duan, D.: Real-time digital twin machine learning-based cost minimization model for renewable-based microgrids considering uncertainty. Sol. Energy 250, 355–367 (2023). https://doi.org/10.1016/j.solener.2023.01.006

    Article  Google Scholar 

  34. Li, Q., Cui, Z., Cai, Y., Su, Y., Wang, B.: Renewable-based microgrids’ energy management using smart deep learning techniques: Realistic digital twin case. Sol. Energy 250, 128–138 (2023). https://doi.org/10.1016/j.solener.2022.12.030

    Article  Google Scholar 

  35. Hernandez-Matheus, A., et al.: A systematic review of machine learning techniques related to local energy communities. Renewable and Sustainable Energy Reviews 170 (2022). https://doi.org/10.1016/j.rser.2022.112651

  36. Ma, S., Ding, W., Liu, Y., Ren, S., Yang, H.: Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries. Applied Energy 326, (2022). https://doi.org/10.1016/j.apenergy.2022.119986

  37. Biegańska, M.: IoT-based decentralized energy systems. Energies 15, (2022). https://doi.org/10.3390/en15217830

  38. McMillan, L., Varga, L.: A review of the use of artificial intelligence methods in infrastructure systems. Engineering Applications of Artificial Intelligence 116 (2022). https://doi.org/10.1016/j.engappai.2022.105472

  39. Fan, Z., et al.: The role of ‘living laboratories’ in accelerating the energy system decarbonization. Energy Rep. 8, 11858–11864 (2022). https://doi.org/10.1016/j.egyr.2022.09.046

    Article  Google Scholar 

  40. Lei, J., et al.: A reinforcement learning approach for defending against multiscenario load redistribution attacks. IEEE Trans. Smart Grid. 13, 3711–3722 (2022). https://doi.org/10.1109/TSG.2022.3175470

    Article  Google Scholar 

  41. Rahim, S., Wang, Z., Ju, P.: Overview and applications of Robust optimization in the avant-garde energy grid infrastructure: A systematic review. Applied Energy 319, (2022). https://doi.org/10.1016/j.apenergy.2022.119140

  42. Kandasamy, N.K., Venugopalan, S., Wong, T.K., Leu, N.J.: An electric power digital twin for cyber security testing, research and education. Computers and Electrical Engineering 101 (2022). https://doi.org/10.1016/j.compeleceng.2022.108061

  43. Marot, A., et al.: Perspectives on future power system control centers for energy transition. J. Modern Power Sys. Clean Ene. 10, 328–344 (2022). https://doi.org/10.35833/MPCE.2021.000673

  44. Li, H., et al.: Data-driven hybrid petri-net based energy consumption behaviour modelling for digital twin of energy-efficient manufacturing system. Energy 239 (2022). https://doi.org/10.1016/j.energy.2021.122178

  45. Mishra, M., Biswal, M., Bansal, R.C., Nayak, J., Abraham, A., Malik, O.P.: Intelligent Computing in Electrical Utility Industry 4.0: Concept, Key Technologies, Applications and Future Directions. IEEE Access 10, 100312–100336 (2022). https://doi.org/10.1109/ACCESS.2022.3205031

  46. Alanne, K., Sierla, S.: An overview of machine learning applications for smart buildings. Sustainable Cities and Society 76 (2022). https://doi.org/10.1016/j.scs.2021.103445

  47. You, M., Wang, Q., Sun, H., Castro, I., Jiang, J.: Digital twins based day-ahead integrated energy system scheduling under load and renewable energy uncertainties. Applied Energy 305 (2022). https://doi.org/10.1016/j.apenergy.2021.117899

  48. Baidya, S., Potdar, V., Pratim Ray, P., Nandi, C.: Reviewing the opportunities, challenges, and future directions for the digitalization of energy. Ener. Res. Soc. Sci. 81, (2021). https://doi.org/10.1016/j.erss.2021.102243

  49. Onile, A.E., Machlev, R., Petlenkov, E., Levron, Y., Belikov, J.: Uses of the digital twins concept for energy services, intelligent recommendation systems, and demand side management: a review. Energy Rep. 7, 997–1015 (2021). https://doi.org/10.1016/j.egyr.2021.01.090

    Article  Google Scholar 

  50. Ahmad, T., et al.: Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. J. Clean. Prod. 289 (2021). https://doi.org/10.1016/j.jclepro.2021.125834

  51. Alonso, J.I.G., et al.: Flexibility services based on openadr protocol for dso level. Sensors (Switzerland). 20, 1–24 (2020). https://doi.org/10.3390/s20216266

    Article  Google Scholar 

  52. Williams, S., Short, M.: Electricity demand forecasting for decentralised energy management. Energy and Built Environment 1, 178–186 (2020). https://doi.org/10.1016/j.enbenv.2020.01.001

    Article  Google Scholar 

  53. Chen, S., et al.: Internet of things based smart grids supported by intelligent edge computing. IEEE Access. 7, 74089–74102 (2019). https://doi.org/10.1109/ACCESS.2019.2920488

    Article  Google Scholar 

  54. Refaat, S.S., Ellabban, O., Sertac, B., Haitham, A.-R., Frede, B., Miroslav M., B.: Smart grid communication infrastructures. In: Smart Grid and Enabling Technologies, pp. 217–228. John Wiley & Sons, Ltd. (2021). https://doi.org/10.1002/9781119422464.ch8

  55. Wan, P.K., Huang, L.: Energy Tracing and Blockchain Technology: A Primary Review. In: Sanfilippo, F., Granmo, O.-C., Yayilgan, S.Y., and Bajwa, I.S. (eds.) Intelligent Technologies and Applications, pp. 223–231. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-10525-8_18

  56. Fathy, Y., Jaber, M., Nadeem, Z.: Digital twin-driven decision making and planning for energy consumption. J. Sens. Actu. Netw. 10 (2021). https://doi.org/10.3390/JSAN10020037

  57. Tomat, V., Ramallo-González, A.P., Skarmeta-Gómez, A., Georgopoulos, G., Papadopoulos, P.: Insights into End Users’ Acceptance and Participation in Energy Flexibility Strategies. Buildings 13 (2023). https://doi.org/10.3390/buildings13020461

  58. Lee, J.Y., Yim, T.: Energy and flow demand analysis of domestic hot water in an apartment complex using a smart meter. Energy 229 (2021). https://doi.org/10.1016/j.energy.2021.120678

Download references

Acknowledgment

The research described in this paper is supported by funding from the FLEX4FACT (Grant agreement ID: 101058657). The authors would like to thank the European Commission and the companies’ respondents that made it possible to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kengfai Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wan, P.K., Ranaboldo, M., Burgio, A., Caccamo, C., Fragapane, G. (2023). A Framework for Enabling Manufacturing Flexibility and Optimizing Industrial Demand Response Services. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 692. Springer, Cham. https://doi.org/10.1007/978-3-031-43688-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43688-8_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43687-1

  • Online ISBN: 978-3-031-43688-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics