Skip to main content

Analysis of an Epoch Commit Protocol for Distributed Processing Systems

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14287))

Included in the following conference series:

  • 231 Accesses

Abstract

A policy that reduces communication overheads by committing together all transactions completed within an interval of time is examined. A model of the system involving two queues served alternatively with preemptions is analysed in the steady-state under Markovian assumptions. An exact and easily implementable solution is derived and is used in order to determine performance measures such as average occupancy or average latency. The optimal length of the operative interval is evaluated numerically. A non-preemptive policy is simulated and is shown to be considerably less efficient than the preemptive one analysed here. A generalization to non-Markovian operative intervals is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balsamo, S., de Nitto Personé, V., Onvural, R.: Analysis of Queueing Networks with Blocking, Kluwer Academic Publishers, Alphen aan den Rijn (2001)

    Google Scholar 

  2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems, Addison-Wesley, Boston (1987)

    Google Scholar 

  3. Birke, R., Giurgiu, I., Chen, L.Y., Wiesmann, D., Engbersen, T.: Failure analysis of virtual and physical machines: patterns, causes and characteristics. In: 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 1–12 (2014)

    Google Scholar 

  4. Curino, C., Zhang, Y., Jones, E.P.C., Madden, S.: Schism: a workload-driven approach to database replication and partitioning. Procs. VLDB Endowment 3(1), 48–57 (2010)

    Article  Google Scholar 

  5. Das, S., Agrawal, D., El Abbadi, A.: G-Store: a scalable data store for transactional multi key access in the cloud. In: Proceedings of 1st ACM Symposium on Cloud Computing, pp. 163–174 (2010)

    Google Scholar 

  6. DeWitt, D.J., Katz, H.R., Olken, F., Shapiro, L.D., Stonebraker, M., Wood, D.A.: Implementation techniques for main memory database systems. In: Proceedings of SIGMOD’84 Annual Meeting, pp. 1–8 (1984)

    Google Scholar 

  7. Garraghan, P., Townend, P., Xu, J.: An empirical failure-analysis of a large-scale cloud computing environment. In: IEEE 15th International Symposium on High-Assurance Systems Engineering, pp. 113–120 (2014)

    Google Scholar 

  8. Lin, Q., Chang, P., Chen, G., Ooi, B.C., Tan, K.L., Wang, Z.: Towards a non-2PC transaction management in distributed database systems. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 1659–1674 (2016)

    Google Scholar 

  9. Lu, Y., Yu, X., Cao, L., Madden, S.: Epoch-based commit and replication in distributed OLTP databases. Procs. VLDB Endowment 14(5), 743–756 (2021)

    Article  Google Scholar 

  10. Mitrani, I.: Probabilistic Modelling, Cambridge University Press, Cambridge (1998)

    Google Scholar 

  11. Perros, H.G.: Queueing Networks with Blocking. Exact and Approximate Solutions. Oxford University Press, Oxford (1994)

    Google Scholar 

  12. Ren, K., Li, D., Abadi, D.J.: SLOG: serializable, low-latency, geo-replicated transactions. Procs. VLDB Endowment 12(11), 1747–1761 (2019)

    Article  Google Scholar 

  13. Thomson, A., Diamond, T., Weng, S., Ren, K., Shao, P., Abadi, D.J.: Calvin: fast distributed transactions for partitioned database systems. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 1–12 (2012)

    Google Scholar 

  14. Tu, S., Zheng, W., Kohler, E., Liskov, B., Madden, S.: Speedy transactions in multicore in-memory databases. In: ACM SIGOPS 24th Symposium on Operating Systems Principles, pp. 18–32 (2013)

    Google Scholar 

  15. Wang, G., Zhang, L., Xu, W.: What can we learn from four years of data center hardware failures. In: 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 25–36 (2017)

    Google Scholar 

  16. Waudby, J., Ezhilchelvan, P., Mitrani, I., Webber, J.: A performance study of epoch-based commit protocols in distributed OLTP databases. In: Proceedings of 41st International Symposium on Reliable Distributed Systems (SRDS), pp. 189–200 (2022)

    Google Scholar 

  17. Whitt, W.: Approximations for the GI/G/m queue. Prod. Oper. Manage. 2(2), 114–161 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ezhilchelvan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ezhilchelvan, P., Mitrani, I., Webber, J. (2023). Analysis of an Epoch Commit Protocol for Distributed Processing Systems. In: Jansen, N., Tribastone, M. (eds) Quantitative Evaluation of Systems. QEST 2023. Lecture Notes in Computer Science, vol 14287. Springer, Cham. https://doi.org/10.1007/978-3-031-43835-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43835-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43834-9

  • Online ISBN: 978-3-031-43835-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics