Skip to main content

Multi-view Graph-Based Text Representations for Imbalanced Classification

  • Conference paper
  • First Online:
Linking Theory and Practice of Digital Libraries (TPDL 2023)

Abstract

Text classification is a fundamental task in natural language processing, notably in the context of digital libraries, where it is essential for organizing and retrieving large numbers of documents in diverse collections, especially when tackling issues with inherent class imbalance. Sequence-based models can successfully capture semantics in local consecutive text sequences. On the other hand, graph-based models can preserve global co-occurrences that capture non-consecutive and long-distance semantics. A text representation approach that combines local and global information can enhance performance in practical class imbalance text classification scenarios. Yet, multi-view graph-based text representations have received limited attention. In this work, we introduce Multi-view Minority Class Text Graph Convolutional Network (MMCT-GCN), a transductive multi-view text classification model that captures textual graph representations for the minority class, along with sequence-based text representations. Experiments show that MMCT-GCN variants outperform baseline models on multiple text collections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, N., Khan, N.M.: A novel focal Tversky loss function with improved attention u-net for lesion segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 683–687. IEEE (2019)

    Google Scholar 

  2. Antonellis, I., Bouras, C., Poulopoulos, V.: Personalized news categorization through scalable text classification. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 391–401. Springer, Heidelberg (2006). https://doi.org/10.1007/11610113_35

    Chapter  Google Scholar 

  3. Bastings, J., Titov, I., Aziz, W., Marcheggiani, D., Sima’an, K.: Graph convolutional encoders for syntax-aware neural machine translation. arXiv preprint arXiv:1704.04675 (2017)

  4. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004)

    Article  Google Scholar 

  5. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018)

  6. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  7. Chen, J., Zhang, B., Xu, Y., Wang, M.: TextRGNN: residual graph neural networks for text classification. arXiv preprint arXiv:2112.15060 (2021)

  8. Chen, Y.: Convolutional Neural Network for Sentence Classification. Master’s thesis, University of Waterloo (2015)

    Google Scholar 

  9. Church, K., Hanks, P.: Word association norms, mutual information, and lexicography. Comput. Linguist. 16(1), 22–29 (1990)

    Google Scholar 

  10. Cui, L., Lee, D.: CoAID: COVID-19 healthcare misinformation dataset. arXiv preprint arXiv:2006.00885 (2020)

  11. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)

    Google Scholar 

  12. Dawei, W., Alfred, R., Obit, J.H., On, C.K.: A literature review on text classification and sentiment analysis approaches. In: Alfred, R., Iida, H., Haviluddin, H., Anthony, P. (eds.) Computational Science and Technology. LNEE, vol. 724, pp. 305–323. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4069-5_26

    Chapter  Google Scholar 

  13. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  14. Garcia, V., Bruna, J.: Few-shot learning with graph neural networks. arXiv preprint arXiv:1711.04043 (2017)

  15. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  16. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  17. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 (2015)

  18. Ho, Y., Wookey, S.: The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 8, 4806–4813 (2019)

    Article  Google Scholar 

  19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  20. Huang, L., Ma, D., Li, S., Zhang, X., Wang, H.: Text level graph neural network for text classification. arXiv preprint arXiv:1910.02356 (2019)

  21. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7. IEEE (2020)

    Google Scholar 

  22. Jindal, N., Liu, B.: Review spam detection. In: Proceedings of the 16th International Conference on World Wide Web, pp. 1189–1190 (2007)

    Google Scholar 

  23. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)

  24. Jurafsky, D., Martin, J.H.: Speech and Language Processing: an Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Pearson Prentice Hall, Hoboken (2009)

    Google Scholar 

  25. Keskar, N.S., McCann, B., Xiong, C., Socher, R.: Unifying question answering, text classification, and regression via span extraction. arXiv preprint arXiv:1904.09286 (2019)

  26. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics (2014)

    Google Scholar 

  27. Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., Brown, D.: Text classification algorithms: a survey. Information 10(4), 150 (2019)

    Article  Google Scholar 

  28. Li, C., Peng, X., Peng, H., Li, J., Wang, L.: TextGTL: graph-based transductive learning for semi-supervised text classification via structure-sensitive interpolation. In: IJCAI. ijcai. org (2021)

    Google Scholar 

  29. Li, X., Sun, X., Meng, Y., Liang, J., Wu, F., Li, J.: Dice loss for data-imbalanced NLP tasks. arXiv preprint arXiv:1911.02855 (2019)

  30. Li, X., Sun, X., Meng, Y., Liang, J., Wu, F., Li, J.: Dice loss for data-imbalanced NLP tasks. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 465–476 (2020)

    Google Scholar 

  31. Li, Y., Yang, M., Zhang, Z.: A survey of multi-view representation learning. IEEE Trans. Knowl. Data Eng. 31(10), 1863–1883 (2018)

    Article  Google Scholar 

  32. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  33. Liu, X., You, X., Zhang, X., Wu, J., Lv, P.: Tensor graph convolutional networks for text classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 8409–8416 (2020)

    Google Scholar 

  34. Liu, Y., et al.: Pick and choose: a GNN-based imbalanced learning approach for fraud detection. In: Proceedings of the Web Conference 2021, pp. 3168–3177 (2021)

    Google Scholar 

  35. Ma, J.: Segmentation loss odyssey. arXiv preprint arXiv:2005.13449 (2020)

  36. Marcheggiani, D., Bastings, J., Titov, I.: Exploiting semantics in neural machine translation with graph convolutional networks. arXiv preprint arXiv:1804.08313 (2018)

  37. Marcheggiani, D., Titov, I.: Encoding sentences with graph convolutional networks for semantic role labeling. arXiv preprint arXiv:1703.04826 (2017)

  38. Melville, P., Gryc, W., Lawrence, R.D.: Sentiment analysis of blogs by combining lexical knowledge with text classification. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1275–1284 (2009)

    Google Scholar 

  39. Meng, Y., Shen, J., Zhang, C., Han, J.: Weakly-supervised neural text classification. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 983–992 (2018)

    Google Scholar 

  40. Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., Gao, J.: Deep learning-based text classification: a comprehensive review. ACM Comput. Surv. (CSUR) 54(3), 1–40 (2021)

    Article  Google Scholar 

  41. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. arXiv preprint cs/0506075 (2005)

    Google Scholar 

  42. Peng, H., et al.: Large-scale hierarchical text classification with recursively regularized deep graph-CNN. In: Proceedings of the World Wide Web Conference, pp. 1063–1072 (2018)

    Google Scholar 

  43. Rahnama, J., Hüllermeier, E.: Learning Tversky similarity. In: Lesot, M.-J., et al. (eds.) IPMU 2020. CCIS, vol. 1238, pp. 269–280. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50143-3_21

    Chapter  Google Scholar 

  44. Ramos, J., et al.: Using TF-IDF to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning, vol. 242, pp. 29–48. Citeseer (2003)

    Google Scholar 

  45. Sachan, D.S., Zaheer, M., Salakhutdinov, R.: Revisiting LSTM networks for semi-supervised text classification via mixed objective function. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6940–6948 (2019)

    Google Scholar 

  46. Sahu, S.K., Thomas, D., Chiu, B., Sengupta, N., Mahdy, M.: Relation extraction with self-determined graph convolutional network. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 2205–2208 (2020)

    Google Scholar 

  47. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image segmentation using 3d fully convolutional deep networks. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 379–387. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_44

    Chapter  Google Scholar 

  48. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Sig. Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  49. Shi, M., Tang, Y., Zhu, X., Wilson, D., Liu, J.: Multi-class imbalanced graph convolutional network learning. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20) (2020)

    Google Scholar 

  50. Shi, S., Qiao, K., Yang, S., Wang, L., Chen, J., Yan, B.: Boosting-GNN: boosting algorithm for graph networks on imbalanced node classification. Front. Neurorobot. 15, 154 (2021)

    Article  Google Scholar 

  51. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  52. Song, L., Zhang, Y., Wang, Z., Gildea, D.: A graph-to-sequence model for AMR-to-text generation. arXiv preprint arXiv:1805.02473 (2018)

  53. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  54. Wang, K., Han, S.C., Poon, J.: InducT-GCN: inductive graph convolutional networks for text classification. arXiv preprint arXiv:2206.00265 (2022)

  55. Wang, S.I., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic classification. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 90–94 (2012)

    Google Scholar 

  56. Wu, T., Liu, S., Zhang, J., Xiang, Y.: Twitter spam detection based on deep learning. In: Proceedings of the Australasian Computer Science Week Multiconference, pp. 1–8 (2017)

    Google Scholar 

  57. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  58. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative message passing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5419 (2017)

    Google Scholar 

  59. Yao, L., Mao, C., Luo, Y.: Graph Convolutional networks for text classification. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 7370–7377 (2019)

    Google Scholar 

  60. Zhao, T., Zhang, X., Wang, S.: GraphSMOTE: imbalanced node classification on graphs with graph neural networks. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 833–841 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ola Karajeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karajeh, O., Lourentzou, I., Fox, E.A. (2023). Multi-view Graph-Based Text Representations for Imbalanced Classification. In: Alonso, O., Cousijn, H., Silvello, G., Marrero, M., Teixeira Lopes, C., Marchesin, S. (eds) Linking Theory and Practice of Digital Libraries. TPDL 2023. Lecture Notes in Computer Science, vol 14241. Springer, Cham. https://doi.org/10.1007/978-3-031-43849-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43849-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43848-6

  • Online ISBN: 978-3-031-43849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics