Skip to main content

VISA-FSS: A Volume-Informed Self Supervised Approach for Few-Shot 3D Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Few-shot segmentation (FSS) models have gained popularity in medical imaging analysis due to their ability to generalize well to unseen classes with only a small amount of annotated data. A key requirement for the success of FSS models is a diverse set of annotated classes as the base training tasks. This is a difficult condition to meet in the medical domain due to the lack of annotations, especially in volumetric images. To tackle this problem, self-supervised FSS methods for 3D images have been introduced. However, existing methods often ignore intra-volume information in 3D image segmentation, which can limit their performance. To address this issue, we propose a novel self-supervised volume-aware FSS framework for 3D medical images, termed VISA-FSS. In general, VISA-FSS aims to learn continuous shape changes that exist among consecutive slices within a volumetric image to improve the performance of 3D medical segmentation. To achieve this goal, we introduce a volume-aware task generation method that utilizes consecutive slices within a 3D image to construct more varied and realistic self-supervised FSS tasks during training. In addition, to provide pseudo-labels for consecutive slices, a novel strategy is proposed that propagates pseudo-labels of a slice to its adjacent slices using flow field vectors to preserve anatomical shape continuity. In the inference time, we then introduce a volumetric segmentation strategy to fully exploit the inter-slice information within volumetric images. Comprehensive experiments on two common medical benchmarks, including abdomen CT and MRI, demonstrate the effectiveness of our model over state-of-the-art methods. Code is available at https://github.com/sharif-ml-lab/visa-fss

M. Mozafari and A. Bitarafan—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels. Tech. rep. (2010)

    Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9252–9260 (2018)

    Google Scholar 

  3. Bitarafan, A., Azampour, M.F., Bakhtari, K., Soleymani Baghshah, M., Keicher, M., Navab, N.: Vol2flow: segment 3d volumes using a sequence of registration flows. In: Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Proceedings, Part IV, pp. 609–618. Springer (2022). https://doi.org/10.1007/978-3-031-16440-8_58

  4. Bitarafan, A., Nikdan, M., Baghshah, M.S.: 3d image segmentation with sparse annotation by self-training and internal registration. IEEE J. Biomed. Health Inform. 25(7), 2665–2672 (2020)

    Article  Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Chen, X., et al.: A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy. Radiother. Oncol. 160, 175–184 (2021)

    Article  Google Scholar 

  7. Denner, S., et al.: Spatio-temporal learning from longitudinal data for multiple sclerosis lesion segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 111–121. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_11

    Chapter  Google Scholar 

  8. Ding, H., Sun, C., Tang, H., Cai, D., Yan, Y.: Few-shot medical image segmentation with cycle-resemblance attention. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2488–2497 (2023)

    Google Scholar 

  9. Farshad, A., Makarevich, A., Belagiannis, V., Navab, N.: Metamedseg: volumetric meta-learning for few-shot organ segmentation. In: Domain Adaptation and Representation Transfer 2022, pp. 45–55. Springer (2022). https://doi.org/10.1007/978-3-031-16852-9_5

  10. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59, 167–181 (2004)

    Article  MATH  Google Scholar 

  11. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  12. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32, 582–596 (2019)

    Article  Google Scholar 

  13. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5149–5169 (2021)

    Google Scholar 

  14. Kavur, A.E., et al.: Chaos challenge-combined (ct-mr) healthy abdominal organ segmentation. Med. Image Anal. 69, 101950 (2021)

    Article  Google Scholar 

  15. Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: Miccai multi-atlas labeling beyond the cranial vault-workshop and challenge. In: Proc. MICCAI Multi-Atlas Labeling Beyond Cranial Vault-Workshop Challenge. vol. 5, p. 12 (2015)

    Google Scholar 

  16. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-denseunet: hybrid densely connected unet for liver and tumor segmentation from ct volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  17. Lutnick, B.: An integrated iterative annotation technique for easing neural network training in medical image analysis. Nat. Mach. Intell. 1(2), 112–119 (2019)

    Article  Google Scholar 

  18. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  19. Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., Rueckert, D.: Self-supervision with superpixels: training few-shot medical image segmentation without annotation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 762–780. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_45

    Chapter  Google Scholar 

  20. Ouyang, C., Kamnitsas, K., Biffi, C., Duan, J., Rueckert, D.: Data efficient unsupervised domain adaptation for cross-modality image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 669–677. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_74

    Chapter  Google Scholar 

  21. Roy, A.G., Siddiqui, S., Pölsterl, S., Navab, N., Wachinger, C.: Squeeze & excite’guided few-shot segmentation of volumetric images. Med. Image Anal. 59, 101587 (2020)

    Article  Google Scholar 

  22. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  23. Tang, H., Liu, X., Sun, S., Yan, X., Xie, X.: Recurrent mask refinement for few-shot medical image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3918–3928 (2021)

    Google Scholar 

  24. Tsochatzidis, L., Koutla, P., Costaridou, L., Pratikakis, I.: Integrating segmentation information into CNN for breast cancer diagnosis of mammographic masses. Comput. Methods Programs Biomed. 200, 105913 (2021)

    Article  Google Scholar 

  25. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: Panet: few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197–9206 (2019)

    Google Scholar 

  26. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassir Navab .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3815 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mozafari, M., Bitarafan, A., Azampour, M.F., Farshad, A., Soleymani Baghshah, M., Navab, N. (2023). VISA-FSS: A Volume-Informed Self Supervised Approach for Few-Shot 3D Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics