Skip to main content

FedGrav: An Adaptive Federated Aggregation Algorithm for Multi-institutional Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

With the increasingly strengthened data privacy acts and the difficult data centralization, Federated Learning (FL) has become an effective solution to collaboratively train the model while preserving each client’s privacy. FedAvg is a standard aggregation algorithm that makes the proportion of the dataset size of each client an aggregation weight. However, it can’t deal with non-independent and identically distributed (non-IID) data well because of its fixed aggregation weights and the neglect of data distribution. The paper presents a new aggregation strategy called FedGrav, which is designed to handle non-IID datasets and is inspired by the law of universal gravitation in physics. FedGrav can dynamically adjust the aggregation weights based on the training condition of local models throughout the entire training process, making it an effective solution for non-IID data. The model affinity is creatively proposed by considering both the differences of sample size on the client and the discrepancies among local models. It considers the client sample size as the mass of the local model and defines the model graph distance based on neural network topology. By calculating the affinity among local models, FedGrav can explore internal correlations of them and improve the aggregation weights. The proposed FedGrav has been applied to the CIFAR-10 and the MICCAI Federated Tumor Segmentation (FeTS) Challenge 2021 datasets, and the validation results show that our method outperforms the previous state-of-the-art by 1.54 mean DSC and 2.89 mean HD95. The source code will be available on Github.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://fets-ai.github.io/Challenge/.

References

  1. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  2. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  3. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data. arXiv preprint arXiv:1806.00582 (2018)

  4. Li, X., Jiang, M., Zhang, X., et al.: FedBN: federated learning on non-IID features via local batch normalization. In: International Conference on Learning Representations (2020)

    Google Scholar 

  5. Li, T., Sahu, A.K., Zaheer, M., et al.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  6. Sattler, F., Wiedemann, S., Maluller, K.-R., Samek, W.: Robust and communication-efficient federated learning from non-IID data. IEEE Trans. Neural Networks Learn. Syst. 31, 3400–3413 (2019)

    Article  Google Scholar 

  7. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S.J., Stich, S.U., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. ICML 2020 (2020)

    Google Scholar 

  8. Chen, X., Chen, T., Sun, H., Wu, Z.S., Hong, M.: Distributed training with heterogeneous data: bridging median- and mean-based algorithms. In: NeurIPS 2020 (2020)

    Google Scholar 

  9. Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_9

    Chapter  Google Scholar 

  10. Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16

    Chapter  Google Scholar 

  11. Liu, Q., Chen, C., Qin, J., et al.: Feddg: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1013–1023 (2021)

    Google Scholar 

  12. Guo, P., Wang, P., Zhou, J., Jiang, S., Patel, V.M.: Multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2423–2432 (2021)

    Google Scholar 

  13. Guo, P., et al.: Auto-FedRL: federated hyperparameter optimization for multi-institutional medical image segmentation. arXiv preprint arXiv:2203.06338 (2022)

  14. Xia, Y., Yang, D., Li, W., et al.: Auto-FedAvg: learnable federated averaging for multi-institutional medical image segmentation. arXiv preprint arXiv:2104.10195 (2021)

  15. Yeganeh, Y., Farshad, A., Navab, N., Albarqouni, S.: Inverse distance aggregation for federated learning with non-IID data. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 150–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_15

    Chapter  Google Scholar 

  16. Palihawadana, C., Wiratunga, N., Wijekoon, A., et al.: FedSim: similarity guided model aggregation for Federated Learning. Neurocomputing 483, 432–445 (2022)

    Article  Google Scholar 

  17. Chen, H.Y., Chao, W.L.: FedBE: making Bayesian model ensemble applicable to federated learning. In: International Conference on Learning Representations

    Google Scholar 

  18. Chen, Z., Zhu, M., Yang, C., Yuan, Y.: Personalized retrogress-resilient framework for real-world medical federated learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 347–356. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_33

    Chapter  Google Scholar 

  19. Dong, N., Voiculescu, I.: Federated contrastive learning for decentralized unlabeled medical images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 378–387. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_36

    Chapter  Google Scholar 

  20. Pati, S., et al.: The federated tumor segmentation (fets) challenge. arXiv preprint arXiv:2105.05874 (2021)

  21. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  22. Reina, G.A., et al.: Open: an open-source framework for federated learning. arXiv preprint arXiv:2105.06413 (2021)

  23. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  24. Koer, F., et al.: Brats toolkit: translating brats brain tumor segmentation algorithms into clinical and scientific practice. Front. Neurosci. 14, 125 (2020)

    Article  Google Scholar 

  25. Mächler, L., Ezhov, I., Kofler, F., et al.: FedCostWAvg: a new averaging for better Federated Learning. In: Crimi, A., Bakas, S. (eds.) BrainLes 2021, Part II. LNCS, vol. 12963, pp. 383–391. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09002-8_34

    Chapter  Google Scholar 

  26. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  27. Gabrielsson, R.B.: Topological Data Analysis of Convolutional Neural Networks’ Weights on Images

    Google Scholar 

  28. Nikolentzos, G., Meladianos, P., Vazirgiannis, M.: Matching node embeddings for graph similarity. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, pp. 2429–2435 (2017)

    Google Scholar 

  29. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

Download references

Acknowledgements

This work was supported by the Fund for Innovation and Transformation of Haidian District, Beijing, China(No. HDCXZHKC2021201)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, Z. et al. (2023). FedGrav: An Adaptive Federated Aggregation Algorithm for Multi-institutional Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics