
SLPT: Selective Labeling Meets Prompt Tuning
on Label-Limited Lesion Segmentation

Fan Bai1,2,3, Ke Yan2,3, Xiaoyu Bai2,3, Xinyu Mao1, Xiaoli Yin4, Jingren
Zhou2,3, Yu Shi4, Le Lu2, and Max Q.-H. Meng1,5

1 Department of Electronic Engineering, The Chinese University of Hong Kong,
Shatin, Hong Kong, China

2 DAMO Academy, Alibaba Group
3 Hupan Lab, 310023, Hangzhou, China

4 Department of Radiology, Shengjing Hospital of China Medical University,
Shenyang, 110004, China

5 Department of Electronic and Electrical Engineering, Southern University of
Science and Technology, Shenzhen, China

Abstract. Medical image analysis using deep learning is often chal-
lenged by limited labeled data and high annotation costs. Fine-tuning
the entire network in label-limited scenarios can lead to overfitting and
suboptimal performance. Recently, prompt tuning has emerged as a more
promising technique that introduces a few additional tunable parame-
ters as prompts to a task-agnostic pre-trained model, and updates only
these parameters using supervision from limited labeled data while keep-
ing the pre-trained model unchanged. However, previous work has over-
looked the importance of selective labeling in downstream tasks, which
aims to select the most valuable downstream samples for annotation to
achieve the best performance with minimum annotation cost. To ad-
dress this, we propose a framework that combines selective labeling with
prompt tuning (SLPT) to boost performance in limited labels. Specif-
ically, we introduce a feature-aware prompt updater to guide prompt
tuning and a TandEm Selective LAbeling (TESLA) strategy. TESLA
includes unsupervised diversity selection and supervised selection using
prompt-based uncertainty. In addition, we propose a diversified visual
prompt tuning strategy to provide multi-prompt-based discrepant pre-
dictions for TESLA. We evaluate our method on liver tumor segmenta-
tion and achieve state-of-the-art performance, outperforming traditional
fine-tuning with only 6% of tunable parameters, also achieving 94% of
full-data performance by labeling only 5% of the data.

Keywords: Active Learning · Prompt Tuning · Segmentation.

1 Introduction

Deep learning has achieved promising performance in computer-aided diagnosis
[14,12,1,24], but it relies on large-scale labeled data to train, which is challenging
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in medical imaging due to label scarcity and high annotation cost [25,3]. Specifi-
cally, expert annotations are required for medical data, which can be costly and
time-consuming, especially in tasks such as 3D image segmentation.

Transferring pre-trained models to downstream tasks is an effective solution
for addressing the label-limited problem [8], but fine-tuning the full network
with small downstream data is prone to overfitting [16]. Recently, prompt tun-
ing [18,5] is emerging from natural language processing (NLP), which introduces
additional tunable prompt parameters to the pre-trained model and updates only
prompt parameters using supervision signals obtained from a few downstream
training samples while keeping the entire pre-trained unchanged. By tuning only
a few parameters, prompt tuning makes better use of pre-trained knowledge. It
avoids driving the entire model with few downstream data, which enables it to
outperform traditional fine-tuning in limited labeled data. Building on the re-
cent success of prompt tuning in NLP [5], instead of designing text prompts and
Transformer models, we explore visual prompts on Convolutional Neural Net-
works (CNNs) and the potential to address data limitations in medical imaging.

However, previous prompt tuning research [18,28], whether on language or
visual models, has focused solely on the model-centric approach. For instance,
CoOp [29] models a prompt’s context using a set of learnable vectors and op-
timizes it on a few downstream data, without discussing what kind of samples
are more suitable for learning prompts. VPT [13] explores prompt tuning with a
vision Transformer, and SPM [17] attempts to handle downstream segmentation
tasks through prompt tuning on CNNs, which are also model-centric. However, in
downstream tasks with limited labeled data, selective labeling as a data-centric
method is crucial for determining which samples are valuable for learning, simi-
lar to Active Learning (AL)[23]. In AL, given the initial labeled data, the model
actively selects a subset of valuable samples for labeling and improves perfor-
mance with minimum annotation effort. Nevertheless, directly combining prompt
tuning with AL presents several problems. First, unlike the task-specific mod-
els trained with initial data in AL, the task-agnostic pre-trained model (e.g.,
trained by related but not identical supervised or self-supervised task) is em-
ployed for data selection with prompt tuning. Second, in prompt tuning, the
pre-trained model is frozen, which may render some AL methods inapplicable,
such as those previously based on backbone gradient [9] and feature [19]. Third,
merging prompt tuning with AL takes work. Their interplay must be considered.
However, previous AL methods [27] did not consider the existence of prompts
or use prompts to estimate sample value.

Therefore, this paper proposes the first framework for selective labeling and
prompt tuning (SLPT), combining model-centric and data-centric methods to
improve performance in medical label-limited scenarios. We make three main
contributions: (1) We design a novel feature-aware prompt updater embedded
in the pre-trained model to guide prompt tuning in deep layers. (2) We propose
a diversified visual prompt tuning mechanism that provides multi-prompt-based
discrepant predictions for selective labeling. (3) We introduce the TESLA strat-
egy which includes both unsupervised diversity selection via task-agnostic fea-
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Fig. 1. Workflow of SLPT: (1) Create an initial label set via the pre-trained model for
unsupervised diversity selection (subplot c step 0). (2) Insert a feature-aware prompt
updater (subplot a) into the pre-trained model for prompt tuning with initial labels.
(3) Use diversified visual prompt tuning (subplot b) to obtain prompt-based discrepant
predictions. (4) Select valuable data by prompt-based uncertainty (subplot c step 1)
and update the prompt-based model accordingly. Note: The orange modules are tunable
for prompt tuning, while the gray ones are frozen. Please zoom in for details.

tures and supervised selection considering prompt-based uncertainty. The results
show that SLPT outperforms fine-tuning with just 6% of tunable parameters and
achieves 94% of full-data performance by selecting only 5% of labeled data.

2 Methodology

Given a task-agnostic pre-trained model and unlabeled data for an initial med-
ical task, we propose SLPT to improve model performance. SLPT consists of
three components, as illustrated in Fig. 1: (a) a prompt-based visual model, (b)
diversified visual prompt tuning, and (c) tandem selective labeling. Specifically,
with SLPT, we can select valuable data to label and tune the model via prompts,
which helps the model overcome label-limited medical scenarios.

2.1 Prompt-based Visual Model

The pre-trained model, learned by supervised or unsupervised training, is a pow-
erful tool for improving performance on label-limited downstream tasks. Fine-
tuning a large pre-trained model with limited data may be suboptimal and prone
to overfitting [16]. To overcome this issue, we draw inspiration from NLP [18] and
explore prompt tuning on visual models. In order to facilitate prompt tuning on
the model’s deep layers, we introduce the Feature-aware Prompt Updater (FPU).
FPUs are inserted into the network to update deep prompts and features. In Fig.
1(a), an FPU receives two inputs, feature map F out

i−1 and prompt Pi−1, of the
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same shape, and updates to Fi and Pi through two parallel branches. In the fea-
ture branch, F out

i−1 and Pi−1 are concatenated and fed into a 1x1 convolution and
fusion module. The fusion module utilizes ASPP [7] to extract multi-scale con-
texts. Then a SE [11] module for channel attention enhances context by channel.
Finally, the attention output and F out

i−1 are element-wise multiplied and added
to obtain the updated feature Fi. In the prompt branch, the updated feature
Fi is concatenated with the previous prompt Pi−1, and a parameter-efficient
depth-separable convolution is employed to generate the updated prompt Pi.

To incorporate FPU into a pre-trained model, we consider the model com-
prising N modular Mi (i = 1, ..., N) and a head output layer. After each Mi,
we insert an FPUi. Given the input F in

i−1 and prompt Pi−1, we have the output
feature Fi, updated prompt Pi and prediction Y as follows:

F out
i−1 = Mi(F

in
i−1), Fi, Pi = FPUi(F

out
i−1, Pi−1), Y = Head(FN ) (1)

where input X = F0, FPU and Head are tuned while Mi is not tunable.

2.2 Diversified Visual Prompt Tuning

Inspired by multi-prompt learning [18] in NLP, we investigate using multiple
visual prompts to evaluate prompt-based uncertainty. However, initializing and
optimizingK prompts directly can significantly increase parameters and may not
ensure prompt diversity. To address these challenges, we propose a diversified
visual prompt tuning approach. As shown in Fig. 1(b), our method generates

K prompts Pk ∈ R1×D×H×W from a meta prompt PM ∈ R1×D
2 ×H

2 ×W
2 through

K different upsampling and convolution operations UpConvk. PM is initialized
from the statistical probability map of the foreground category, similar to [17].
Specifically, we set the foreground to 1 and the background to 0 in the ground-
truth mask, and then average all masks and downsample to 1 × D

2 × H
2 × W

2 .
To enhance prompt diversity, we introduce a prompt diversity loss Ldiv that
regularizes the cosine similarity between the generated prompts and maximizes
their diversity. This loss is formulated as follows:

Ldiv =

K−1∑
k1=1

K∑
k2=k1+1

Pk1
· Pk2

||Pk1
||2 · ||Pk2||2

(2)

where Pk1 and Pk2 represent the k1-th and k2-th generated prompts, respectively,
and || · ||2 denotes the L2 norm. By incorporating the prompt diversity loss, we
aim to generate a set of diverse prompts for our visual model.

In NLP, using multiple prompts can produce discrepant predictions [2] that
help estimate prompt-based uncertainty. Drawing inspiration, we propose a vi-
sual prompt tuning approach that associates diverse prompts with discrepant
predictions. To achieve this, we design K different data augmentation, heads,
and losses based on corresponding K prompts. By varying hyperparameters, we
can achieve different data augmentation strengths, increasing the model’s diver-
sity and generalization. Different predictions Yk are generated by K heads, each
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supervised with a Tversky loss [21] TLk = TP
TP+αkFP+βkFN , where TP, FP, and

FN represent true positive, false positive, and false negative, respectively. To
obtain diverse predictions with false positives and negatives, we use different αk

and βk values in TLk. The process is formulated as follows:

Pk = UpConvk(PM ), Xk = DAk(X), Yk = Headk(MFPU (Xk, Pk)) (3)

L =

K∑
k=1

(λ1 · TLk(Yk, Ŷ ) + λ2 · CE(Yk, Ŷ )) + λ3 · Ldiv (4)

where k = 1, ...,K, MFPU is the pre-trained model with FPU, CE is the cross-
entropy loss, and λ1 = λ2 = λ3 = 1 weight each loss component. Ŷ represents
the ground truth and L is the total loss.

2.3 Tandem Selective Labeling

Previous studies overlook the critical issue of data selection for downstream
tasks, especially when available labels are limited. To address this challenge, we
propose a novel strategy called TESLA. TESLA consists of two tandem steps:
unsupervised diversity selection and supervised uncertainty selection. The first
step aims to maximize the diversity of the selected data, while the second step
aims to select the most uncertain samples based on diverse prompts.

Step 0: Unsupervised Diversity Selection Since we do not have any labels
in the initial and our pre-trained model is task-agnostic, we select diverse samples
to cover the entire dataset. To achieve this, we leverage the pre-trained model
to obtain feature representations for all unlabeled data. Although these features
are task-independent, they capture the underlying relationships, with similar
samples having closer feature distances. We apply the k-center method from
Coreset [22], which identifies the B samples that best represent the diversity of
the data based on these features. These selected samples are then annotated and
serve as the initial dataset for downstream tasks.

Step 1: Supervised Uncertainty Selection After prompt tuning with the
initial dataset, we obtain a task-specific model that can be used to evaluate data
value under supervised training. Since only prompt-related parameters can be
tuned while others are frozen, we assess prompt-based uncertainty via diverse
prompts, considering inter-prompts uncertainty and intra-prompts uncertainty.
In the former, we compute the multi-prompt-based divergence map D, given K
probability predictions Yk through K diverse prompts Pk, as follows:

D =

K∑
k=1

KL(Yk||Ymean), Ymean =
1

K

K∑
k=1

Yk (5)

where KL refers to the KL divergence[15]. Then, we have the divergence score
Sd = Mean(D), which reflects inter-prompts uncertainty.
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In the latter, we evaluate intra-prompts uncertainty by computing the mean
prediction of the prompts and propose to estimate prompt-based gradients as
the model’s performance depends on the update of prompt parameters θp. How-
ever, for these unlabeled samples, computing their supervised loss and gradient
directly is not feasible. Therefore, we use the entropy of the model’s predictions
as a proxy for loss. Specifically, we calculate the entropy-based prompt gradient
score Sg for each unlabeled sample as follows:

Sg =
∑
θp

||∇θp(−
∑

Ymean ∗ log Ymean)||2 (6)

To avoid manual weight adjustment, we employ multiplication instead of
addition. We calculate our uncertainty score S as follows:

S =
Sd

max(Sd)
× Sg

max(Sg)
(7)

where max(·) finds the maximum value. We sort the unlabeled data by their
corresponding S values in ascending order and select the top B data to annotate.

3 Experiments and Results

3.1 Experimental Settings

Datasets and Pre-trained Model We conducted experiments on automating
liver tumor segmentation in contrast-enhanced CT scans, a crucial task in liver
cancer diagnosis and surgical planning [1]. Although there are publicly available
liver tumor datasets [1,24], they only contain major tumor types and differ in
image characteristics and label distribution from our hospital’s data. Deploying
a model trained from public data to our hospital directly will be problematic.
Collecting large-scale data from our hospital and training a new model will be
expensive. Therefore, we can use the model trained from them as a starting
point and use SLPT to adapt it to our hospital with minimum cost. We col-
lected a dataset from our in-house hospital comprising 941 CT scans with eight
categories: hepatocellular carcinoma, cholangioma, metastasis, hepatoblastoma,
hemangioma, focal nodular hyperplasia, cyst, and others. It covers both major
and rare tumor types. Our objective is to segment all types of lesions accurately.
We utilized a pre-trained model for liver segmentation using supervised learning
on two public datasets [24] with no data overlap with our downstream task. The
nnUNet[12] was used to preprocess and sample the data into 24x256x256 patches
for training. To evaluate the performance, we employed a 5-fold cross-validation
(752 for selection, 189 for test).

Metrics We evaluated lesion segmentation performance using pixel-wise and
lesion-wise metrics. For pixel-wise evaluation, we used the Dice per case, a com-
monly used metric [1]. For lesion-wise evaluation, we first do connected compo-
nent analysis to predicted and ground truth masks to extract lesion instances,
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Table 1. Evaluation of different tunings on the lesion segmentation with limited data
(40 class-balanced patients). Prec. and Rec. denote precision and recall.

Method
Tuning
Type

Trainable
Parameters

Pixel-wise Lesion-wise
Mean

Dice Prec. Rec. Prec. Rec.

Fine-tuning
All

44.81M 64.43 87.69 59.86 50.84 54.14 63.39
Learn-from-Scratch 44.81M 54.15 73.33 50.25 45.84 45.78 53.87

Encoder-tuning
Part

19.48M 65.61 82.00 61.96 29.36 41.10 56.00
Decoder-tuning 23.64M 67.87 77.96 70.56 30.82 35.92 56.63
Head-tuning 0.10M 56.73 74.45 55.57 23.29 29.74 47.96

SPM [17]
Prompt

3.15M 68.60 83.07 69.02 62.15 55.19 67.61
Ours 2.71M 68.76 79.63 69.76 64.63 61.18 68.79

and then compute precision and recall per case [20]. A predicted lesion is re-
garded as a TP if its overlap with ground truth is higher than 0.2 in Dice.

Competing Approaches In the prompt tuning experiment, we compared
our method with three types of tuning: full parameter update (Fine-tuning,
Learn-from-Scratch), partial parameter update (Head-tuning, Encoder-tuning,
Decoder-tuning), and prompt update (SPM [17]). In the unsupervised diversity
selection experiment, we compared our method with random sampling. In the
supervised uncertainty selection experiment, we compared our method with ran-
dom sampling, diversity sampling (Coreset [22], CoreCGN [6]), and uncertainty
sampling (Entropy, MC Dropout [10], Ensemble [4], UncertainGCN [6], Ent-gn
[26]). Unlike Ensemble, our method was on multi-prompt-based heads. Further-
more, unlike Ent-gn, which computed the entropy-based gradient from a single
prediction, we calculated a stable entropy from the muti-prompt-based mean
predictions and solely considered the prompt gradient.

Training Setup We conducted the experiments using the Pytorch framework
on a single NVIDIA Tesla V100 GPU. The nnUNet [12] framework was used
for 3D lesion segmentation with training 500 epochs at an initial learning rate
of 0.01. We integrated 13 FPUs behind each upsampling or downsampling of
nnUNet, adding only 2.7M parameters. During training, we set k=3 and em-
ployed diverse data augmentation techniques such as scale, elastic, rotation, and
mirror. Three sets of TL parameters is (α1,2,3=0.5,0.7,0.3, β1,2,3=0.5,0.3,0.7). To
ensure fairness and eliminate model ensemble effects, we only used the model’s
prediction with k = 1 during testing. We used fixed random seeds and 5-fold
cross-validation for all segmentation experiments.

3.2 Results

Evaluation of Prompt Tuning Since we aim to evaluate the efficacy of
prompt tuning on limited labeled data in Table 1, we create a sub-dataset of ap-
proximately 5% (40/752) from the original dataset. Specifically, we calculate the
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Table 2. Comparison of data selection methods for label-limited lesion segmentation.
Step 0: unsupervised diversity selection. Step 1: supervised uncertainty selection. The
labeling budget for each step is 20 patients. Step +∞ refers to fully labeled 752 data.

Step Method
Pixel-wise Lesion-wise

Mean
Dice Prec. Rec. Prec. Rec.

0
Random 65.58 80.00 65.21 23.46 39.94 54.84
Ours 68.20 78.97 69.15 32.51 34.67 56.70

1

Random 66.67 79.95 70.67 41.45 39.45 59.64
Entropy 66.39 80.85 66.96 37.40 39.47 58.21

MC Dropout [10] 69.23 79.61 69.48 30.43 36.29 57.01
Ensemble [4] 69.79 80.25 69.54 64.38 58.34 68.46
CoreSet [22] 70.72 79.34 72.03 46.03 51.24 63.87
CoreGCN [6] 70.91 77.56 72.37 51.73 49.88 64.49

UncertainGCN [6] 71.44 75.07 75.62 72.83 44.99 67.99
Ent-gn [26] 70.54 79.91 71.42 61.12 56.37 67.87

Ours (w/o Sd) 69.54 81.97 68.59 60.47 59.82 68.08
Ours (w/o Sg) 71.01 80.68 69.83 59.42 58.78 67.94

Ours 72.07 82.07 72.37 61.21 61.90 69.92

+∞ Fine-tuning with
Full Labeled Data

77.44 85.44 77.15 62.78 68.56 74.27

class probability distribution vector for each sample based on the pixel class in
the mask and use CoreSet with these vectors to select 40 class-balanced samples.
Using this sub-dataset, we evaluated various tuning methods for limited medical
lesion diagnosis data. The results are summarized in Table 1. Fine-tuning all pa-
rameters served as the strongest baseline, but our method, which utilizes only 6%
tunable parameters, outperformed it by 5.4%. Although SPM also outperforms
fine-tuning, our methods outperform SPM by 1.18% and save 0.44M tunable
parameters with more efficient FPU. In cases of limited data, fine-tuning tends
to overfit on a larger number of parameters, while prompt tuning does not. The
pre-trained model is crucial for downstream tasks with limited data, as it im-
proves performance by 9.52% compared to Learn-from-Scratch. Among the three
partial tuning methods, the number of tuning parameters positively correlates
with the model’s performance, but they are challenging to surpass fine-tuning.

Evaluation of Selective Labeling We conducted steps 0 (unsupervised selec-
tion) and 1 (supervised selection) from the unlabeled 752 data and compared our
approach with other competing methods, as shown in Table 2. In step 0, without
any labeled data, our diversity selection outperformed the random baseline by
1.86%. Building upon the 20 data points selected by our method in step 0, we
proceeded to step 1, where we compared our method with eight other data selec-
tion strategies in supervised mode. As a result, our approach outperformed other
methods because of prompt-based uncertainty, such as Ent-gn and Ensemble, by
2.05% and 1.46%, respectively. Our approach outperformed Coreset by 6.05%
and CoreGCN by 5.43%. We also outperformed UncertainGCN by 1.93%. MC
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Dropout and Entropy underperformed in our prompt tuning, likely due to the
difficulty of learning such uncertain data with only a few prompt parameters.
Notably, our method outperformed random sampling by 10.28%. These results
demonstrate the effectiveness of our data selection approach in practical tasks.

Ablation Studies We conducted ablation studies on Sd and Sg in TESLA. As
shown in Table 2, the complete TESLA achieved the best performance, outper-
forming the version without Sd by 1.84% and the version without Sg by 1.98%.
It shows that each component plays a critical role in improving performance.

4 Conclusions

We proposed a pipeline called SLPT that enhances model performance in label-
limited scenarios. With only 6% of tunable prompt parameters, SLPT outper-
forms fine-tuning due to the feature-aware prompt updater. Moreover, we pre-
sented a diversified visual prompt tuning and a TESLA strategy that combines
unsupervised and supervised selection to build annotated datasets for down-
stream tasks. SLPT pipeline is a promising solution for practical medical tasks
with limited data, providing good performance, few tunable parameters, and low
labeling costs. Future work can explore the potential of SLPT in other domains.
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