Skip to main content

Class Specific Feature Disentanglement and Text Embeddings for Multi-label Generalized Zero Shot CXR Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Robustness of medical image classification models is limited by its exposure to the candidate disease classes. Generalized zero shot learning (GZSL) aims at correctly predicting seen and unseen classes and most current GZSL approaches have focused on the single label case. It is common for chest x-rays to be labelled with multiple disease classes. We propose a novel multi-label GZSL approach using: 1) class specific feature disentanglement and 2) semantic relationship between disease labels distilled from BERT models pre-trained on biomedical literature. We learn a dictionary from distilled text embeddings, and leverage them to synthesize feature vectors that are representative of multi-label samples. Compared to existing methods, our approach does not require class attribute vectors, which are an essential part of GZSL methods for natural images but are not available for medical images. Our approach outperforms state of the art GZSL methods for chest xray images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://huggingface.co/dmis-lab/biobert-v1.1.

References

  1. Bian, C., Yuan, C., Ma, K., Yu, S., Wei, D., Zheng, Y.: Domain adaptation meets zero-shot learning: an annotation-efficient approach to multi-modality medical image segmentation. IEEE Trans. Med. Imaging 41(5), 1043–1056 (2022)

    Article  Google Scholar 

  2. Bustos, A., Pertusa, A., Salinas, J.M., de la Iglesia-Vayá, M.: PadChest: A large chest x-ray image dataset with multi-label annotated reports. Med. Image Anal. 66, 101797 (2020)

    Article  Google Scholar 

  3. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 9912–9924. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf

  4. Chen, Y., et al.: Zero-shot medical image artifact reduction. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 862–866 (2020). https://doi.org/10.1109/ISBI45749.2020.9098566

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint: arXiv:1810.04805 (2018)

  6. Feng, Y., Huang, X., Yang, P., Yu, J., Sang, J.: Non-generative generalized zero-shot learning via task-correlated disentanglement and controllable samples synthesis. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9336–9345 (2022)

    Google Scholar 

  7. Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016). https://doi.org/10.1001/jama.2016.17216

    Article  Google Scholar 

  8. Hayat, N., Lashen, H., Shamout, F.: Multi-label generalized zero shot learning for the classification of disease in chest radiographs. In: Proceeding of the Machine Learning for Healthcare Conference, pp. 461–477 (2021)

    Google Scholar 

  9. Huynh, D., Elhamifar, E.: A shared multi-attention framework for multi-label zero-shot learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8773–8783 (2020). https://doi.org/10.1109/CVPR42600.2020.00880

  10. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. arXiv preprint: arXiv:1901.07031 (2017)

  11. Jia, J., He, F., Gao, N., Chen, X., Huang, K.: Learning disentangled label representations for multi-label classification (2022). https://doi.org/10.48550/arXiv.2212.01461

  12. Kong, X., et al.: En-compactness: self-distillation embedding and contrastive generation for generalized zero-shot learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9296–9305 (2022). https://doi.org/10.1109/CVPR52688.2022.00909

  13. Kori, A., Krishnamurthi, G.: Zero shot learning for multi-modal real time image registration. arXiv preprint: arXiv:1908.06213 (2019)

  14. Lee, C.W., Fang, W., Yeh, C.K., Wang, Y.C.F.: Multi-label zero-shot learning with structured knowledge graphs. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1576–1585 (2018). https://doi.org/10.1109/CVPR.2018.00170

  15. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)

    Article  MathSciNet  Google Scholar 

  16. Mahapatra, D., Bozorgtabar, B., Kuanar, S., Ge, Z.: Self-supervised multimodal generalized zero shot learning for Gleason grading. In: Albarqouni, S., et al. (eds.) DART/FAIR -2021. LNCS, vol. 12968, pp. 46–56. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87722-4_5

    Chapter  Google Scholar 

  17. Mahapatra, D., Bozorgtabar, B., Ge, Z.: Medical image classification using generalized zero shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pp. 3344–3353 (2021)

    Google Scholar 

  18. Mahapatra, D., Ge, Z., Reyes, M.: Self-supervised generalized zero shot learning for medical image classification using novel interpretable saliency maps. IEEE Trans. Med. Imaging 41(9), 2443–2456 (2022). https://doi.org/10.1109/TMI.2022.3163232

    Article  Google Scholar 

  19. Mensink, T., Gavves, E., Snoek, C.G.: COSTA: co-occurrence statistics for zero-shot classification. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2441–2448 (2014). https://doi.org/10.1109/CVPR.2014.313

  20. Park, T., et al.: Swapping autoencoder for deep image manipulation. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  21. Paul, A., et al.: Generalized zero-shot chest x-ray diagnosis through trait-guided multi-view semantic embedding with self-training. IEEE Trans. Med. Imaging 40, 2642–2655 (2021). https://doi.org/10.1109/TMI.2021.3054817

    Article  Google Scholar 

  22. Su, H., Li, J., Chen, Z., Zhu, L., Lu, K.: Distinguishing unseen from seen for generalized zero-shot learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7875–7884 (2022). https://doi.org/10.1109/CVPR52688.2022.00773

  23. Verma, V., Arora, G., Mishra, A., Rai, P.: Generalized zero-shot learning via synthesized examples. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4281–4289 (2018)

    Google Scholar 

  24. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the CVPR (2017)

    Google Scholar 

  25. Wu, J., Zhang, T., Zha, Z.J., Luo, J., Zhang, Y., Wu, F.: Self-supervised domain-aware generative network for generalized zero-shot learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12767–12776 (2020)

    Google Scholar 

  26. Xian, Y., Sharma, S., Schiele, B., Akata, Z.: F-VAEGAN-D2: a feature generating framework for any-shot learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10275–10284 (2019)

    Google Scholar 

  27. Yuan, Z., Yan, Y., Sonka, M., Yang, T.: Large-scale robust deep AUC maximization: A new surrogate loss and empirical studies on medical image classification. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3020–3029 (2021)

    Google Scholar 

  28. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=r1Ddp1-Rb

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwarikanath Mahapatra .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 313 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahapatra, D. et al. (2023). Class Specific Feature Disentanglement and Text Embeddings for Multi-label Generalized Zero Shot CXR Classification. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics