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Abstract. The relationship between blood flow and neuronal activity
is widely recognized, with blood flow frequently serving as a surrogate
for neuronal activity in fMRI studies. At the microscopic level, neuronal
activity has been shown to influence blood flow in nearby blood vessels.
This study introduces the first predictive model that addresses this issue
directly at the explicit neuronal population level. Using in vivo recordings
in awake mice, we employ a novel spatiotemporal bimodal transformer
architecture to infer current blood flow based on both historical blood
flow and ongoing spontaneous neuronal activity. Our findings indicate
that incorporating neuronal activity significantly enhances the model’s
ability to predict blood flow values. Through analysis of the model’s
behavior, we propose hypotheses regarding the largely unexplored nature
of the hemodynamic response to neuronal activity.
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1 Introduction

The brain consumes copious amounts of energy to sustain its activity, resulting in
a skewed energetic budget per mass compared to the rest of the body (about 25%
utilized by about 3%, see [12,2] for an elaborate review of energy utilization).
Given this disproportionate need, resources are allocated on a need-basis: active
areas signal to the nearby blood vessel to dilate and increase blood flow, bringing
a surplus of resources, to that area. This fundamental physiological process is
called neurovascular coupling. It is non-trivial to model and different types of
neuronal activity have been shown to elicit opposite vascular responses.

Neurovascular coupling is a cornerstone of proper brain function and also
underpins the ability to observe and study the human brain in action. Imaging
methods based on blood oxygenated level dependent (BOLD) approaches rely
on it [9], as do methods that are based on rheological properties, such as blood
volume and flow speed. Since these methods do not directly measure neuronal
activity per-se, but a physiological proxy, i.e. the resulting change in vascular
dynamics and oxygen levels, it is of utmost importance to know the precise
transform function linking neuronal activity to the observed vascular dynamics.
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Given the differential response to neuronal activity (see [5] for a timely review),
obtaining a cellular and population level hemodynamic response function (HRF)
remains an unmet need in this field, that would finally unlock the ability to infer
neuronal activity directly from blood flow dynamics [16].

The initial characterization of the hemodynamic response function (HRF)
was performed at the system level, where system refers to large cortical regions
encompassing tens of thousands of neurons of different types, without taking
into account the fine details of different vascular compartments (see [25] for
a succinct review on the original works). At this level, a canonical response
function was derived from extensive work on sensory-evoked somatosensory re-
sponses. This HRF has become widely accepted and used in the interpretation
of BOLD signals. This function consists of three components: an initial dip (its
existence and physiological origin are much debated), a prolonged and very pro-
nounced overshoot, followed by a shallower and much shorter undershoot. The
initial dip occurs within one second of the sensory stimulus, the overshoot peaks
around five seconds later, overshoot and return to baseline level occurs within
15-20 seconds post stimuli. It should be noted that vascular reactivity is much
faster than the collective behavior described by the canonical HRF, with reports
showing sensory-evoked vascular responses observed after just 300ms. Recently,
more advanced imaging and analysis methods have pushed the formulation of
an HRF at the single cell to single blood vessel (capillary) level, pointing to a
rather narrow family of possible functions. Importantly, this work also estab-
lished that the HRF derived at the microscopic level can be partially translated
to macroscopic imaging approaches. Nevertheless, single neuron to single ves-
sel responses fail to capture the more complex and varied neuronal population
level responses that could be integrated across the extensive vascular network
that surrounds them. Here, we exploit a unique dataset, in which neuronal and
vascular responses (changes in diameter) were recorded in a volumetric fashion
and with relevant temporal resolution, allowing us to establish a novel pipeline
to uncover/formulate a many-to-many HRF.

Our model needs to combine neuron firing and blood vessel data and employs
a multi-modal transformer. There are three types of multi-modal transform-
ers: (i) a multi-modal Transformer where the two modalities are concatenated
and separated by the [SEP] token [14,15], and self-attention is used, (ii) co-
attention-based model modules that contextualize each modality with the other
modality [22,17], and (iii) generative models containing an encoder that uses
self-attention on the input and a decoder that uses both the encoded data and
data from the decoder’s domain as inputs [3,30,28,19,27,26,13]. Our model is
of the third type and presents two distinctive properties: pulling from multiple
time points and an attention mechanism that is modulated based on distance.

Our results show that the new transformer model can predict the state of
blood vessels better than the baseline models. The utility of neuronal data in
the prediction is demonstrated by an ablation study. By analyzing the learned
model, we obtain insights into the link between neuronal and vascular activities.
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2 Data

All procedures were approved by the Anonymous Ethics Committee for Ani-
mal Use and Welfare and followed pertinent Institutional Animal Care and Use
Committee (IACUC) and local guidelines. Neuronal activity was monitored in
female C57BL/6J transgenic mice expressing Thy1-GCaMP6s. Vascular dynam-
ics were tracked using a Texas Red fluorescent dye, which was conjugated to a
large polysaccharide moiety (2 mega Dalton dextran) and retro-orbitally bolus
injected under brief isoflurane sedation at the beginning of the imaging day.

425 quasi-linear vascular segments and 50 putative neuronal cell bodies were
manually labeled within a volume of 490×500×300µm3, which was continuously
imaged across two consecutive 1850-second long sessions at an imaging rate of
30.03 volumes per second. For neuronal activity estimation, we selected a cuboid
volume of interest around each neuronal cell body and summed the fluorescence
within it following an axial intensity normalization corresponding to an uneven
duty cycle of our varifocal lens.

For vascular diameter estimation we used the Radon transform, [8,18,6,1,20,7,24]
as its resilience to rotation and poor contrast are particularly useful for our ap-
plication. Specifically, Gao and Drew have formerly found that thresholding the
vascular intensity profile in Radon space is more resilient to noise than other
thresholding methods [8]. Based on their observation, we used the time-collapsed
imagery to determine a threshold in Radon space, which was then applied sep-
arately for each frame in time.

This unique ability to rapidly track neuronal and vascular interactions across
a continuous brain volume bears several important advantages. In particular,
a greater proportion of the vascular ensemble that reacts to a given neuronal
metabolic demand can be accounted for.

3 Method

The HRF learning problem explored in this work is defined as the prediction of
current blood flow rates at different vessel segments, given the previous neuronal
spikes as well as previous blood flow rates. We propose to design a parameterized
deep neural network fθ for scalar regression of blood flow rates at different vessel
segments, such that at a given time t we have

fθ(St, Ft, XS , XF )→ Rm (1)

where the matrix St ∈ Rts×n denotes the n neurons’ spikes at the ts previous
samples, while the matrix Ft ∈ Rtv×m denotes the blood flow of the m vessel
segment at the previous tv time samples. XS ∈ Rn×3 and XF ∈ Rm×3 are the
three-dimensional positions of the neurons and vessel segments, respectively.

HRF predictions should satisfy fundamental symmetries and invariance of
physiological priors and of experimental bias, such as invariance to rigid spa-
tial transformation (rotation and translation). Therefore, a positional input
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Xu is transformed to inter-elements Euclidean distances Du = {duij}i,j where
duij = ∥(Xu)i − (Xu)j∥2 for rigid transform invariance.

Thus, the learning problem is refined as fθ : {St, Ft, DS , DF , DSF } → Rm,
where DS , DF , DSF represents the Euclidean distance matrix between neurons,
vessel segments, and neurons to vessel segments, respectively. We do not include
any further auxiliary features or prior in the input.

We model fθ using a new variant of the Transformer family. The proposed
model consists of an encoder and a decoder. The encoder embeds the neurons
at both spatial and temporal levels. The decoder predicts vessel segment flow
by utilizing both the past flow values and the spatial information of the vessel
segments, along with the neuronal activity via the cross-attention mechanism.

Transformers The self-attention mechanism introduced by Transformers
[26] is based on a trainable associative memory with (key, value) vector pairs,
where a query vector q ∈ Rd is matched against a set of k key vectors using
scaled inner products, as follows

A(Q,K, V ) = Softmax

(
QKT

√
d

)
V, (2)

where Q ∈ RN×d, K ∈ Rk×d and V ∈ Rk×d represent the packed N queries, k
keys and values tensors respectively. Keys, queries and values are obtained using
linear transformations of the sequence’s elements. A multi-head self-attention
layer is defined by extending the self-attention mechanism using h attention
heads, i.e. h self-attention functions applied to the input, reprojected to values
via a dh×D linear layer.

Neuronal Encoding To obtain the initial Spatio-Temporal Encoding, for the
prediction at time t, we project each neuron to a high d dimensional embedding
ϕst ∈ Rts×n×d by modulating it with its spike value such that ϕst = St⊙ (1dW

T ),
where W ∈ Rd denotes the neuronal encoding. The embedding is modulated by
the magnitude of the spike, such that higher neuronal activities are projected
farther in the embedding space.

The temporal encoding is defined using sinusoidal encoding [26] applied on ϕ
and augmented with a learnable embedding such that ϕst ← ϕst + pt · p̃ where pt
and p̃ represent the sinusoidal time encoding and the learned vector, respectively.
We emphasize the fact that, contrary to traditional transformers, the embedding
tensor ϕt has an additional spatial dimension such that the tensor is three-
dimensional, enabling both spatial and temporal attention.

In order to incorporate the spatial information of the neurons, we propose to
insert spatial encoding by importing the pairwise information directly into the
self-attention layer. For this, we multiply the distance relation by the similarity
tensor as follows

AS(Q,K,DS) = Softmax

(
QKT

√
d

)
⊙ ψS(DS), (3)

with ⊙ denoting the Hadamard product, and ψS(DS) : R+ → R+ an element-
wise learnable parameterized similarity function. This way, the similarity func-
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tion scales the self-attention map according to the distance between the elements
(in our case the neurons).

Vascular Decoding The spatio-temporal encoding of the vascular data is
similar to the embedding performed by the encoder. The information on each
vascular segment is embedded in a high-dimensional vector ϕFt ∈ Rtv×m×d to be
further projected by the temporal encoding. The spatial geometric information
is incorporated via the pairwise vascular segments’ distance matrix DF via the
decoder’s self-attention module AF .

The most important element of the decoder is the cross-attention module,
which incorporates neuronal information for vascular prediction. Given the final
neuronal embeddings ϕst , the cross-attention module performs cross-analysis of
the neuronal embeddings such that

ASF (QF ,KS , DS) = Softmax

(
QFK

T
S√
d

)
⊙ ψSF (DSF ), (4)

where QF and KS represent the affine transform of ϕFt and ϕst , respectively.
Here also, the (non-square) cross-attention map is modulated by the neuron-
vessel distance matrix DSF .

The spatio-temporal map is of dimensions ASF ∈ Rtv×ts×h×m×n where h
denotes the number of attention heads. Thus, we perform aggregation by av-
eraging over the neuronal time dimension, in order to remain invariant to the
temporal neuronal embedding and to gather all past neuronal influence on blood
flow rates. This way, one can observe that the proposed method is not limited
to any spatial or time constraint. The model can be deployed in different spatio-
temporal settings at test time, thanks to both the geometric spatial encoding
and the Transformer’s sequential processing ability. Finally, the output module
reprojects the last time vessel embedding into the prediction space.

Architecture and Training The initial encoding defines the model embed-
ding dimension d = 64. The encoder and the decoder are defined as the concate-
nation of L = 3 layers, each composed of self-attention and feed-forward layers
interleaved with normalization layers. The decoder also contains N additional
cross-attention modules. The output layer is defined by a fully connected layer
that projects the last vascular time embedding into the objective dimension m.
An illustration of the model is given in Figure 1.

The dimension of the feed-forward network is four times that of the embed-
ding [26]. It is composed of GEGLU layers [21], with layer normalization set to
the pre-layer norm setting, as in [11,29]. We use an eight-head self-attention mod-
ule in all experiments. The geometric filtering first augments the distance using
Fourier features [23] and the module is a fully connected neural network with
two 50-dimensional hidden layers and GELU non-linearities, expanded to all the
heads of the self-attention module. We provide the module with the element-wise
inverse of the distance matrix instead of the regular Euclidean matrix, both in
order to reduce the dynamic range and since closer elements may have a higher
impact.
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Fig. 1. Illustration of the proposed HRF Transformer architecture. The main differ-
ences from the traditional Transformers are the Geometric self-attention modules and
the unified spatiotemporal analysis induced by the time aggregation module.

The training objective is the Mean Squared Error loss

L = Et

( m∑
j

∥fθ(St, Ft, DS , DF , DSF )− Ft+1∥2
)

(5)

The Adam optimizer [10] is used with 32 samples per minibatch, for 300
epochs. We initialized the learning rate to 5 · 10−5 coupled with a cosine decay
scheduler down to 1 · 10−6 at the end of the training. The dataset of the first
data collection session has been split by 85%, 7.5% and 7.5% for the training,
validation, and testing set, respectively. Training time is approximately 20 hours
for time windows ts = tv = 10, on an NVIDIA RTX A600. Testing time is
approximately 0.25ms per sample.

4 Experiments

We compare the proposed method, dubbed Hemodynamic Response Function
Transformer (HRFT), with several popular statistical and machine-learning
models: (i) naive persistence model, which predicts the previous time step’s vas-
cular input, (ii) linear regression, which concatenates all the input (blood flow
and neuronal data) from all times stamps before performing the regression, and
(iii) a Recurrent Neural Network composed of two stacked GRU [4] layers. All
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Table 1. The prediction errors of the various methods on two test sets. The first is
obtained in the same session for which the training samples were collected (top half of
the table, and the second in a separate session 30 minutes later (bottom half).

6 Hz 15 Hz 30.03 Hz

Method MSE NRMSE MSE NRMSE MSE NRMSE

Persistence 24.38 0.220 12.93 0.160 6.923 0.115
Linear 13.65 0.166 9.660 0.139 5.911 0.107
RNN 13.78 0.168 11.38 0.157 10.31 0.147
HRFT-S 13.34 0.165 9.426 0.138 5.782 0.110
HRFT 13.00 0.162 9.370 0.137 5.783 0.106

Persistence 23.11 0.221 11.97 0.160 7.662 0.125
Linear 17.01 0.192 10.26 0.147 6.002 0.111
RNN 15.193 0.182 13.04 0.172 11.87 0.162
HRFT-S 14.63 0.176 9.820 0.147 5.914 0.110
HRFT 14.34 0.173 9.191 0.143 5.908 0.110

the methods are experimented with using the same inputs and the models have
similar capacity (∼0.5M parameters).

In order to understand the impact of neuronal information, we also compare
our method with the HRFT encoder only applied to the vascular input, referred
to as HRFT-S. The only difference between this model and the full HRFT is
the cross-attention module. If the neuronal input is irrelevant or the link is too
weak to improve the prediction, HRFT is expected not to outperform HRFT-S,
which makes the comparison pertinent.

We present both MSE and Normalized Root MSE. Because of computa-
tional constraints, we randomly subsample 55 vessel segments among the 425.
We trained the model with temporal windows of size ts = tv = 10, equivalent to
300 ms according to the original data acquisition’s 30.03Hz sampling rate.

In addition to the original sampling rate, we also present results for prediction
based on lower frequencies, in order to check the ability of the models to capture
longer-range dependencies. We note that the error in these cases is expected to
be larger, since the time gap between the last measurement and the required
prediction is larger.

In order to check the generalization abilities of the methods, we test the
trained models on a second dataset obtained 30 minutes after the sampling of
the original dataset (that includes training, validation, and the first test set).

The results are presented in Tab. 1. As can be seen, the HRFT method
outperforms all baselines, including the HRFT-S variant, for 6Hz and 15Hz. At
the original sampling rate, the performance of HRFT and HRFT-S is similar and
better than the baselines. This is expected since at this frame rate the history of
tv = 10 we employ spans only 300ms, which is at the limit of the shortest known
neurovascular response reported in the literature [25]. It is reassuring that error
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(a) (b) (c)

Fig. 2. (a) The learned function ψSF for the 1st cross-attention layer of the transformer.
(b) The magnitude of the self-attention map between every neuron and every vessel at
this layer. (c) The impact of the neurons on the vessels (saturated at 90%) for each shift
in time as obtained by marginalizing over all 2nd session test samples in the 30.02Hz
dataset. More visualizations of the datasets and the learned features are provided in
the Appendix.

levels for HRFT remain similar for samples taken 30min after the training set
(and the first test set) were collected.

To gain insights into the HRF, we examine the HRFT model. The learned
distance function ψSF of the 1st cross attention layer is depicted in Fig. 2(a)
(other layers are similar). The plot shows the learned function in blue and the
actual samples in red. Evidently, this prior on the attention is monotonically
decreasing with the distance between the neuron and the blood vessel. Panel (b)
shows the cross-attention in the same layer. We note that some neurons have
little influence, and the rest of the attention is scattered relatively uniformly.
Panel (c) considers the derivative of the prediction vector Ft+1 by each of the
neuron data, summed over all test samples of the 2nd session at 6Hz, and all
neurons and vessels. There are two negative peaks (contractions) that occur at
333ms and 1333ms, which is remarkably consistent with current knowledge [25].
There is also a dilation effect at 666ms. The 15hz data with tv = 10 captures
shifts of 0-700ms and the 300ms peak is clearly visible in that model as well.

5 Conclusions and future work

We present the first local HRF model. While for the baseline methods, the per-
formance is at the same level with and without neuronal data (omitted from the
tables), the transformer we present supports an improved prediction capability
using neuronal firing rates (ablation) and also gives rise to interesting insights
regarding the behavior of the hemodynamic response function.

Limitations Our main goal is to verify the ability to model HRF by showing
that using neuronal data helps predict blood flow beyond the history of the
latter. The next challenge is to scale the model in order to be able to model
more vessels (without subsampling) and longer historical sequences (larger tv, ts).
With transformers being used for very long sequences, this is a limitation of our
resources and not of our method.
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A Additional visualizations

We provide several visualizations of the data and the induced learned feature
maps. The data is selected such that we remove vessels with diameters less than
the data acquisition resolution.

A.1 Data Visualization

In Figure 3 we provide the visualization of a few samples from the dataset
sampled at 30.02Hz.

Fig. 3. Different samples of the original 30.02Hz sampled vascular and neuronal data.

A.2 Data Geometry Visualization

In Figure 4 we provide the visualization of the different pairwise distance matri-
ces used in the model.

A.3 Geometric Filters Visualization

In Figure 5 we provide the visualization of the learned distance filters.
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Fig. 4. Distances matrices.

Fig. 5. Learned Geometric filters. First row: Neuronal filtering. Second row: vascular
filtering. Third row: Neuro-vascular filtering. We can observe the vessels’ interactions
are impactful only between extremely close vessels.

A.4 Self-Attention Map Visualization

In Figure 6 we provide typical visualization of the self-attention maps at different
layers of the network.

A.5 Neuronal Influence

In Figure 7 we provide the visualization of the mean processed neuronal influence
(i.e., gradient) over time.
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Fig. 6. Illustration of the self-attention maps at different layers of the model. The
vascular self-attention is nearly constant because of the learned vascular filters.
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(a)

(b)

Fig. 7. Illustration of the original neuronal gradient data and its saturation in order
to obtain the neuronal impact consistent with the literature. (a): non-smoothed signal
and different saturation percentiles. (b): smoothed (Savitzky-Golay filter) signal and
different saturation percentiles.
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