Skip to main content

Towards AI-Driven Radiology Education: A Self-supervised Segmentation-Based Framework for High-Precision Medical Image Editing

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Medical education is essential for providing the best patient care in medicine, but creating educational materials using real-world data poses many challenges. For example, the diagnosis and treatment of a disease can be affected by small but significant differences in medical images; however, collecting images to highlight such differences is often costly. Therefore, medical image editing, which allows users to create their intended disease characteristics, can be useful for education. However, existing image-editing methods typically require manually annotated labels, which are labor-intensive and often challenging to represent fine-grained anatomical elements precisely. Herein, we present a novel algorithm for editing anatomical elements using segmentation labels acquired through self-supervised learning. Our self-supervised segmentation achieves pixel-wise clustering under the constraint of invariance to photometric and geometric transformations, which are assumed not to change the clinical interpretation of anatomical elements. The user then edits the segmentation map to produce a medical image with the intended detailed findings. Evaluation by five expert physicians demonstrated that the edited images appeared natural as medical images and that the disease characteristics were accurately reproduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Y., et al.: Generative adversarial networks in medical image augmentation: a review. Comput. Biol. Med. 144, 105382 (2022). https://doi.org/10.1016/j.compbiomed.2022.105382

    Article  Google Scholar 

  2. Dhariwal, P., Nichol, A.: Diffusion Models Beat GANs on Image Synthesis. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (NeurIPS). vol. 34, pp. 8780–8794. Curran Associates, Inc. (2021). https://proceedings.neurips.cc/paper_files/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf

  3. Duong, M.T., et al.: Artificial intelligence for precision education in radiology. Br. J. Radiol. 92(1103), 20190389 (2019). https://doi.org/10.1259/BJR.20190389

  4. Fetty, L., et al.: Latent space manipulation for high-resolution medical image synthesis via the StyleGAN. Z. Med. Phys. 30(4), 305–314 (2020). https://doi.org/10.1016/j.zemedi.2020.05.001

    Article  Google Scholar 

  5. Goodfellow, I., et al.: Generative Adversarial Nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems (NIPS). vol. 27 (2014). https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

  6. Hyun Cho, J., Mall, U., Bala, K., Hariharan, B.: PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16789–16799 (2021). https://doi.org/10.1109/CVPR46437.2021.01652

  7. Ji, X., Vedaldi, A., Henriques, J.: Invariant Information Clustering for Unsupervised Image Classification and Segmentation. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9864–9873 (2019). https://doi.org/10.1109/ICCV.2019.00996

  8. Jiang, L., Dai, B., Wu, W., Loy, C.C.: Focal Frequency Loss for Image Reconstruction and Synthesis. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13899–13909 (2021). https://doi.org/10.1109/ICCV48922.2021.01366

  9. Kaiser, L., Roy, A., Vaswani, A., Parmar, N., Bengio, S., Uszkoreit, J., Shazeer, N.: Fast Decoding in Sequence Models using Discrete Latent Variables. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning (ICML). Proceedings of Machine Learning Research, 80, pp. 2390–2399 (2018). https://proceedings.mlr.press/v80/kaiser18a.html

  10. Li, H., Wei, D., Cao, S., Ma, K., Wang, L., Zheng, Y.: Superpixel-guided label softening for medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 227–237. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_23

    Chapter  Google Scholar 

  11. Ling, H., Kreis, K., Li, D., Kim, S.W., Torralba, A., Fidler, S.: EditGAN: High-Precision Semantic Image Editing. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (NeurIPS) vol. 34, pp. 16331–16345 (2021). https://proceedings.neurips.cc/paper/2021/file/880610aa9f9de9ea7c545169c716f477-Paper.pdf

  12. Paszke, A.,et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems (NeurIPS), vol. 32, pp. 8024–8035 (2019). https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Saboo, A., Gyawali, P.K., Shukla, A., Sharma, M., Jain, N., Wang, L.: Latent-optimization based disease-aware image editing for medical image augmentation. In: 32nd British Machine Vision Conference (BMVC). p. 181 (2021). https://www.bmvc2021-virtualconference.com/assets/papers/0840.pdf

  15. Sasuga, S., et al.: Image Synthesis-Based Late Stage Cancer Augmentation and Semi-supervised Segmentation for MRI Rectal Cancer Staging. In: Nguyen, H.V., Huang, S.X., Xue, Y. (eds.) Data Augmentation, Labelling, and Imperfections. pp. 1–10. Springer Nature Switzerland, Cham (2022). https://link.springer.com/chapter/10.1007/978-3-031-17027-0_1

  16. Schonfeld, E., Schiele, B., Khoreva, A.: A U-Net based discriminator for generative adversarial networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8207–8216 (2020). https://doi.org/10.1109/CVPR42600.2020.00823

  17. Thermos, S., Liu, X., O’Neil, A., Tsaftaris, S.A.: Controllable cardiac synthesis via disentangled anatomy arithmetic. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 160–170. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_15

    Chapter  Google Scholar 

  18. Tiago, C., Snare, S.R., Šprem, J., McLeod, K.: A domain translation framework with an adversarial denoising diffusion model to generate synthetic datasets of echocardiography images. IEEE Access 11, 17594–17602 (2023). https://doi.org/10.1109/ACCESS.2023.3246762

    Article  Google Scholar 

  19. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 586–595 (2018). https://doi.org/10.1109/CVPR.2018.00068

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuma Kobayashi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2882 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kobayashi, K. et al. (2023). Towards AI-Driven Radiology Education: A Self-supervised Segmentation-Based Framework for High-Precision Medical Image Editing. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics