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Abstract. Building generalizable AT models is one of the primary chal-
lenges in the healthcare domain. While radiologists rely on generalizable
descriptive rules of abnormality, Neural Network (NN) models suffer even
with a slight shift in input distribution (e.g., scanner type). Fine-tuning
a model to transfer knowledge from one domain to another requires a
significant amount of labeled data in the target domain. In this paper,
we develop an interpretable model that can be efficiently fine-tuned to an
unseen target domain with minimal computational cost. We assume the
interpretable component of NN to be approximately domain-invariant.
However, interpretable models typically underperform compared to their
Blackbox (BB) variants. We start with a BB in the source domain and
distill it into a mizture of shallow interpretable models using human-
understandable concepts. As each interpretable model covers a subset
of data, a mixture of interpretable models achieves comparable perfor-
mance as BB. Further, we use the pseudo-labeling technique from semi-
supervised learning (SSL) to learn the concept classifier in the target
domain, followed by fine-tuning the interpretable models in the target
domain. We evaluate our model using a real-life large-scale chest-X-ray
(CXR) classification dataset. The code is available at: https://github.
com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs.
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1 Introduction

Model generalizability is one of the main challenges of Al, especially in high
stake applications such as healthcare. While NN models achieve state-of-the-art
(SOTA) performance in disease classification [9,17,24], they are brittle to small
shifts in the data distribution [7] caused by a change in acquisition protocol or
scanner type [22]. Fine-tuning all or some layers of a NN model on the target
domain can alleviate this problem [2], but it requires a substantial amount of
labeled data and be computationally expensive [12,21]. In contrast, radiologists
follow fairly generalizable and comprehensible rules. Specifically, they search for
patterns of changes in anatomy to read abnormality from an image and apply
logical rules for specific diagnoses. This approach is transparent and closer to an
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interpretable-by-design approach in Al. We develop a method to extract a mix-
ture of interpretable models based on clinical concepts, similar to radiologists’
rules, from a pre-trained NN. Such a model is more data- and computation-
efficient than the original NN for fine-tuning to a new distribution.

Standard interpretable by design method [18] finds an interpretable function
(e.g., linear regression or rule-based) between human-interpretable concepts and
final output [14]. A concept classifier [19,26] detects the presence or absence of
concepts in an image. In medical images, previous research uses TCAV scores [13]
to quantify the role of a concept on the final prediction [3,6,23], but the concept-
based interpretable models have been mostly unexplored. Recently Posthoc Con-
cept Bottleneck models (PCBMs) [25] identify concepts from the embeddings of
BB. However, the common design choice amongst those methods relies on a single
interpretable classifier to explain the entire dataset, cannot capture the diverse
sample-specific explanations, and performs poorly than their BB variants.

Our contributions. This paper proposes a novel data-efficient interpretable
method that can be transferred to an unseen domain. Our interpretable model is
built upon human-interpretable concepts and can provide sample-specific expla-
nations for diverse disease subtypes and pathological patterns. Beginning with
a BB in the source domain, we progressively extract a mixture of interpretable
models from BB. Our method includes a set of selectors routing the explain-
able samples through the interpretable models. The interpretable models provide
First-order-logic (FOL) explanations for the samples they cover. The remaining
unexplained samples are routed through the residuals until they are covered by
a successive interpretable model. We repeat the process until we cover a desired
fraction of data. Due to class imbalance in large CXR datasets, early inter-
pretable models tend to cover all samples with disease present while ignoring
disease subgroups and pathological heterogeneity. We address this problem by
estimating the class-stratified coverage from the total data coverage. We then
finetune the interpretable models in the target domain. The target domain lacks
concept-level annotation since they are expensive. Hence, we learn a concept
detector in the target domain with a pseudo labeling approach [15] and finetune
the interpretable models. Our work is the first to apply concept-based methods
to CXRs and transfer them between domains.

2 Methodology

Notation. Assume f° : X — ) is a BB, trained on a dataset X x Y x C, with X,
Y, and C being the images, classes, and concepts, respectively; f0 = ho®, where
@ and h° is the feature extractor and the classifier respectively. Also, m is the
number of class labels. This paper focuses on binary classification (having or not
having a disease), so m = 2 and Y € {0,1}. Yet, it can be extended to multiclass
problems easily. Given a learnable projection [4,5], ¢ : & — C, our method learns
three functions: (1) a set of selectors (w : C — {0,1}) routing samples to an
interpretable model or residual, (2) a set of interpretable models (g : C — ),
and (3) the residuals. The interpretable models are called “experts” since they
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Fig. 1. Schematic view of our method. Note that f*(.) = h*(#(.)). At iteration k, the
selector routes each sample either towards the expert g” with probability 771“() or the
residual ¥ = f*=1 — ¢* with probability 1—7"(.). g* generates FOL-based explanations
for the samples it covers. Note @ is fixed across iterations.

specialize in a distinct subset of data defined by that iteration’s coverage 7 as
shown in SelectiveNet [16]. Fig. 1 illustrates our method.

2.1 Distilling BB to the mixture of interpretable models

Handling class imbalance. For an iteration k, we first split the given coverage
7* to stratified coverages per class as {7% = w,, - 7F; w,, = N, /N,V¥m}, where
wy, denotes the fraction of samples belonging to the m!” class; N,, and N are
the samples of m*”* class and total samples, respectively.

Learning the selectors. At iteration k, the selector 7% routes i*" sample to the
expert (g*) or residual (r*) with probability 7" (c;) and 1 — 7% (¢;) respectively.
For coverages {7* Vm}, we learn g and 7* jointly by solving the loss:

0%, 0

ot —argmmRk( (.;QSk),gk(.;ng)) .t Gn (77 (5 000)) > 7 ¥m, (1)

0 .k,0 K

where 9:k79;k are the optimal parameters for 7 and gk respectively. R” is
o £ gF ﬂk)(mhci)

the overall selective risk, defined as, R¥( Z N’" 5
(m
, where (,(7%) = Nlm Eivz"{ 7¥(c;) is the emplrlcal mean of samples of m!"

class selected by the selector for the associated expert gk. We define L?gkmk) in
the next section. The selectors are neural networks with sigmoid activation. At
inference time, 7% routes a sample to ¢* if and only if 7*(.) > 0.5.

Learning the experts. For iteration k, the loss Cl(“qk)ﬂk) distills the expert g*

from f*~!, BB of the previous iteration by solving the following loss:

k—1
Ll oy (is €3) = ﬁ(fkfl(wi),gk(ci))ﬁk(ci) H (1-n(cs)) , (2

trainable component

N . fixed component trained
for current iteration k X P ral

in the previous iterations

where 7% (¢;) H;:ll (1 —7(c;)) is the cumulative probability of the sample cov-

ered by the residuals for all the previous iterations from 1,--- ,k — 1 (i.e.,
HJ 1 (1 - 773(01))) and the expert g* at iteration k (i.e., Wk(ci)).
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Learning the Residuals. After learning g*, we calculate the residual as,
r*(zi,¢;) = fFHx;) — g% (ci) (difference of logits). We fix @ and optimize the
following loss to update h* to specialize on those samples not covered by g¢*,
effectively creating a new BB f* for the next iteration (k -+ 1):

k
Lhxj,ci) = (¥ (xj,c5), fFxy) [0 -7"(cy)) (3)

i=1

trainab}e component  pon-trainable component
for iteration k for iteration k
We refer to all the experts as the Mixture of Interpretable Experts (MoIE-CXR).
We denote the models, including the final residual, as MolE-CXR+R. Each
expert in MolE-CXR constructs sample-specific FOLs using the optimization
strategy and algorithm discussed in [4].

2.2 Finetuning to an unseen domain

We assume the MolE-CXR-~identified concepts to be generalizable to an unseen
domain. So, we learn the projection t; for the target domain and compute the
pseudo concepts using SSL [15]. Next, we transfer the selectors, experts, and
final residual ({r*,¢g*}X | and fK) from the source to a target domain with
limited labeled data and computational cost. Algorithm 1 details the procedure.

Algorithm 1 Finetuning to an unseen domain.

1: Input: Learned selectors, experts, and final residual from source domain:
{Wf,gf}le and fX respectively, with K as the number of experts to transfer.
BB of the source domain: f = hg(@s). Source data: Ds = {Xs,Cs, Vs }. Target
data: Dy = {X:, Vi }. Target coverages {Tk}le.

2: Output: Experts {Wf,gf}szl and final residual fX of the target domain.

Randomly select n; < N; samples out of Ny = |Dy|.

4: Compute the pseudo concepts for the correctly classified samples in the target
domain using f2, as, ¢t = t, (éé(:cls)) st yt = fO(xh),i=1-- ny

5: Learn the projection function ¢ for target domain semi-supervisedly [15] using the
pseudo labeled samples {zi, ci}?, and unlabeled samples {mé}ivztf"t

6: Complete the triplet for the target domain {X;,C¢, V:}, where ¢ = tt(és(a}i)),
i=1--- N;.

7: Finetune {n¥ ¢*}X | and fX to obtain {nF,¢F}% , and fX using equations 1, 2
and 3 respectively for 5 epochs. {nf,gF}% , and {{Wf,gf}le,ft}{} represents
MolE-CXR and MolE-CXR + R for the target domain.

w

3 Experiments

We perform experiments to show that MoIE-CXR 1) captures a diverse set
of concepts, 2) does not compromise BB’s performance, 3) covers “harder” in-
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stances with the residuals in later iterations resulting in their drop in perfor-
mance, 4) is finetuned well to an unseen domain with minimal computation.

NMEARAN N E A

g Expertl Expert2 Expert3 Expert4
e Effusion < (collapse /\ dzd.mage /\ left_pleural A pleural_unpec T
2 A right_diaphragm A right_plural A~crowd A= low A= right_ventricle ) usion Effusion < Effusion < Effusion
i 5 A eron i
5 v (.co]lap.xr", A crowd A drainage A left-pleural A low A pleural-unpec left_pleural ] left_pleural pleural-unspec
A right_apical lung A right_diaphragm A right_pleural A right ventricle ) A right_pleural
PCBM + ELL lD A A pleural unspec A pleural _unspec 2
. A pleural_unspec S
Effusion < left_pleural A pleural unspec P P H
q
\ J
2 CBM + :LL Expertl Expert2 Expert3 Expert4
S Cardi 1 B i Cardi Iy o Cardiomegaly ¢
S GEEERIECE 2 VA OB LoD No Cardlamegaly & congestion Cardiomegaly «» Cardiomegaly ¢» Cardiomegaly AT A
a a A . e ] hf A enlar,
g /\ device Avedema A ~tip /;\’cst:\;:)f ELL heart_size heart size cifemarge A —mediastinal A disease
g Cardi 3 8 y A congestion A —hernia A drainage A engorgement A enlarge
‘ardiomegaly > (chf A engorgement A enlarge) V (edema A engorgement, A enlarge A —distention 2 X “ oz
Aenlarge A heart_size A —congestion A —emphysema A —spine) A engorgement . . Arcongestion ]
A pressure A heart_size A —left_apicallung m
S
1 I ! ! l E ! I! | \
= BM + ELL 3 | L |
'5 Pneumothorax <+ emphysema
2 . PCBM +ELL . Expertl Expert2 Expert3 Expertd Expert5
S Pneumothorax ¢+ (air A emphysema A right_apical lung)V P h P 1
2 P P ax ax P P
z (emphysema A right_apical lung A left_apical lung)V  right_apical lung ¢ right_apical lung ¢+ left-apical-lung ¢ right_apical lung 5 emphysema,
(air A drainage A right_apical lung A —left_apical lung A -lung-apices)V A right lung unspec A right lung.unspec Aleft_lung_unspec E
(air A ~right_apical lung A left_apical lung A ~lung_apices A ~emphysema) m

Fig. 2. Qualitative comparison of MolE-CXR discovered concepts with the baselines.

Experimental Details. We evaluate our method using 220,763 frontal images
from the MIMIC-CXR, dataset [11]. We use Densenet121 [8] as BB (f°) to clas-
sify cardiomegaly, effusion, edema, pneumonia, and pneumothorax, considering
each to be a separate binary classification problem. We obtain 107 anatomical
and observation concepts from the RadGraph’s inference dataset [10], automat-
ically generated by DYGIE++ [20]. We train BB following [24]. To retrieve the
concepts, we utilize until the 4 Densenet block as feature extractor @ and flat-
ten the features to learn t. We use an 80%-10%-10% train-validation-test split
with no patient shared across splits. We use 4, 4, 5, 5, and 5 experts for car-
diomegaly, pneumonia, effusion, pneumothorax, and edema. We employ ELL [1]
as g. Further, we only include concepts as input to g if their validation auroc
exceeds 0.7. Refer to Tab. 1 in the supplementary material for the hyperparam-
eters. We stop until all the experts cover at least 90% of the data cumulatively.
Baseline. We compare our method with 1) end-to-end CEM [26], 2) sequential
CBM [14], and 3) PCBM [25] baselines, comprising of two parts: a) concept
predictor @ : X — C, predicting concepts from images, with all the convolution
blocks; and b) label predictor, g : C — Y, predicting labels from the concepts.
We create CBM + ELL and PCBM + ELL by replacing the standard classifier
with the identical g of MOIE-CXR to generate FOLs [1] for the baseline.

MOoIE-CXR captures diverse explanations. Fig. 2 illustrates the FOL ex-
planations. Recall that the experts (g) in MolE-CXR and the baselines are
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ELLs [1], attributing attention weights to each concept. A concept with high
attention weight indicates its high predictive significance. With a single g, the
baselines rank the concepts in accordance with the identical order of attention
weights for all the samples in a class, yielding a generic FOL for that class. In
Fig. 2, the baseline PCBM + ELL uses left_pleural and pleural_unspec to identify
effusion for all four samples. MoIE-CXR, deploys multiple experts, learning to
specialize in distinct subsets of a class. So different interpretable models in MolE
assign different attention weights to capture instance-specific concepts unique to
each subset. In Fig. 2 expert2 relies on right_pleural and pleural_unspec, but ex-
pert4 relies only on pleural_unspec to classify effusion. The results show that the
learned experts can provide more precise explanations at the subject level using
the concepts, increasing confidence and trust in clinical use.

Table 1. MolE-CXR does not compromize the performance of BB. We provide the
mean and standard errors of AUROC over five random seeds. For MoIE-CXR, we also
report the percentage of test set samples covered by all experts as “Coverage”. We
boldfaced our results and BB.

Model Effusion Cardiomegaly Edema Pneumonia Pneumothorax

Blackbox (BB) 0.92 0.84 0.89 0.79 0.91

INTERPRETABLE BY DESIGN

CEM [26] 0.83+10-4  0.75t1c-4  0.77420-4 0.62:4c-4 0.76 1304
CBM (Sequential) [14] 0.7841e—4 0.7241¢—4 0.7745¢—a 0.60416-3 0.7546e—4
CBM + ELL [1,14] 0.81p10-a  0.721c-4  0.79450-4 0.621sc—4 0.75+6e—4
POSTHOC

PCBM [25] 0.88+16—4 0.81410-4 0.82110-4 0.7211¢-4 0.8517¢—4
PCBM-h [25] 0.90t1c—a  0.83:t1c-4  0.85410-4 0.77%1e—4 0.89+70—4
PCBM + ELL [1,25] 0.9011c—a  0.82:11c-4 085410 4 0.75%1e 4 0.85+6e—4
PCBM-h + ELL [1,25] 0.91t1c—a  0.83:t1c-4  0.87i1c-a 0.77x1e-4 0.90+10-4
OURS

Coverage (0.90) (0.96) (0.92) (0.97) (0.93)

MolIE-CXR ( &e) 0.9377) . o0.8577 0901077 o0.80('7 00177
MolE-CXR+R 0914104 0.82410-4 0.88410-4 0.78410_4  0.90420_4

MoIE-CXR does not compromise BB’s performance. Analysing MolIE-
CXR: Tab. 1 shows that MoIE-CXR outperforms other models, including BB.
Recall that MoIE-CXR refers to the mixture of all interpretable experts, exclud-
ing any residuals. As MoIE-CXR specializes in various subsets of data, it effec-
tively discovers sample-specific classifying concepts and achieves superior per-
formance. In general, MoIE-CXR exceeds the interpretable-by-design baselines
(CEM, CBM, and CBM + ELL) by a fair margin (on average, at least ~ 10% 1),
especially for pneumonia and pneumothorax where the number of samples with
the disease is significantly less (~ 750,/24000 in the testset). Analysing MolE-
CXR+R: To compare the performance on the entire dataset, we additionally
report MoIE-CXR+R, the mixture of interpretable experts with the final resid-
ual in Tab.l. MolE-CXR+R. outperforms the interpretable-by-design models
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Fig. 3. Performance of experts and residuals across iterations. (a-c): Coverage and
proportional AUROC of the experts and residuals. (d-f): Routing the samples covered
by MoIE-CXR to the initial f°, we compare the performance of the residuals with f°.

and yields comparable performance as BB. The residualized PCBM baseline,
i.e., PCBM-h, performs similarly to MoIE-CXR+R. PCBM-h rectifies the inter-
pretable PCBM’s mistakes by learning the residual with the complete dataset
to resemble BB’s performance. However, the experts and the final residual ap-
proximate the interpretable and uninterpretable fractions of BB, respectively. In
each iteration, the residual focuses on the samples not covered by the respective
expert to create BB for the next iteration and likewise. As a result, the final
residual in MoIE-CXR+R covers the "hardest” examples, reducing its overall
performance relative to MolE-CXR.

Identification of harder samples by successive residuals. Fig. 3 (a-c) re-
ports the proportional AUROC of the experts and the residuals per iteration.
The proportional AUROC is the AUROC of that model times the empirical cov-
erage, (¥, the mean of the samples routed to the model by the respective selector
(7*). According to Fig. 3a in iteration 1, the residual (black bar) contributes
more to the proportional AUROC than the expertl (blue bar) for effusion with
both achieving a cumulative proportional AUROC ~ 0.92. All the final experts
collectively extract the entire interpretable component from BB f° in the fi-
nal iteration, resulting in their more significant contribution to the cumulative
performance. In subsequent iterations, the proportional AUROC decreases as
the experts are distilled from the BB of the previous iteration. The BB is de-
rived from the residual that performs progressively worse with each iteration.
The residual of the final iteration covers the “hardest” samples. Tracing these
samples back to the original BB f°, f° underperforms on these samples (Fig. 3
(d-f)) as the residual.
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Fig. 4. Transfering the first 3 experts of MolE-CXR trained on MIMIC-CXR to
Stanford-CXR. With varying % of training samples of Stanford CXR, (a-c): reports
AUROC of the test sets, (d-g) reports computation costs in terms of log (Flops) (T).
We report the coverages in Stanford-CXR on top of the “finetuned” and “No finetuned”
variants of MoIE-CXR (red and blue bars) in (d-g).

Applying MoIE-CXR to the unseen domain. In this experiment, we uti-
lize Algo. 1 to transfer MolE-CXR trained on MIMIC-CXR dataset to Stanford
Chexpert [9] dataset for the diseases — effusion, cardiomegaly and edema. Using
2.5%, 5%, 7.5%, 10%, and 15 % of training data from the Stanford Chexpert
dataset, we employ two variants of MoIE-CXR where we (1) train only the selec-
tors (m) without finetuning the experts (g) (“No finetuned” variant of MoIE-CXR
in Fig. 4), and (2) finetune 7 and g jointly for only 5 epochs (“Finetuned” variant
of MoIE-CXR and MoIE-CXR + R in Fig. 4). Finetuning 7 is essential to route
the samples of the target domain to the appropriate expert. As later experts
cover the “harder” samples of MIMIC-CXR, we only transfer the experts of the
first three iterations (refer to Fig. 3). To ensure a fair comparison, we finetune
(both the feature extractor @ and classifier h°) BB: f° = h® o & of MIMIC-CXR
with the same training data of Stanford Chexpert for 5 epochs. Throughout this
experiment, we fix @ while finetuning the final residual in MoIE+R as stated
in Eq. 3. Fig. 4 displays the performances of different models and the compu-
tation costs in terms of Flops. The Flops are calculated as, Flop of (forward
propagation + backward propagation) x (total no. of batches) x (no of training
epochs). The finetuned MoIE-CXR outperforms the finetuned BB (on average
~ 5% 1 for effusion and cardiomegaly). As experts are simple models [1] and ac-
cept only low dimensional concept vectors compared to BB, the computational
cost to train MoIE-CXR is significantly lower than that of BB (Fig. 4 (d-f)).
Specifically, BB requires ~ 776T flops to be finetuned on 2.5% of the training
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data of Stanford CheXpert, whereas MolE-CXR requires ~ 0.0065T flops. As
MolE-CXR discovers the sample-specific domain-invariant concepts, it achieves
such high performance with low computational cost than BB.

4 Conclusion

This paper proposes a novel iterative interpretable method that identifies instance-
specific concepts without losing the performance of the BB and is effectively fine-
tuned in an unseen target domain with no concept annotation, limited labeled
data, and minimal computation cost. Also, as in the prior work, MolE-captured
concepts may not showcase a causal effect that can be explored in the future.
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Fig. 1. Qualitative comparison of MolE-CXR discovered concepts with the baseline

for edema and pneumonia.

Table 1. Hyperparameters of interpretable experts (g) for the dataset MIMIC-CXR.

Hyperparameter Effusion Cardiomegaly Pneumothorax Pneumonia Edema

Batch size 1028
Learning rate 0.01
)\lens 0.0001
QKD 0.99
Tkp 20
hidden neurons 30, 30
As 96
E-Lens (Tiens) 7.6

# Expers (Tiens) 5

1028
0.01
0.0001
0.99
20
20, 20
1024
7.6
4

1028 1028 1028
0.01 0.01 0.01
0.0001 0.0001 0.0001
0.99 0.99 0.99
20 20 20
20, 20 20, 20 20, 20
256 256 128
10 10 7.6

5 4 5
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Fig. 2. (a-c): Performance drop after zeroing out the concepts iteratively. The drop
indicates the concepts to be more significant for prediction. (d-g): Test time interven-
tions of concepts considering the ground truth concepts as an oracle on all samples
(d-f), on the “hard” samples (g), covered by only the last two experts of MoIE-CXR.
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Fig. 3. (a-b): The performances of experts and residuals across iterations for pneumo-
nia and edema. (c-d): Performance comparison of the residuals and f° for the samples
covered by the successive residuals.
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