Skip to main content

Gadolinium-Free Cardiac MRI Myocardial Scar Detection by 4D Convolution Factorization

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Gadolinium-based contrast agents are commonly used in cardiac magnetic resonance (CMR) imaging to characterize myocardial scar tissue. Recent works using deep learning have shown the promise of contrast-free short-axis cine images to detect scars based on wall motion abnormalities (WMA) in ischemic patients. However, WMA can occur in patients without a scar. Moreover, the presence of a scar may not always be accompanied by WMA, particularly in non-ischemic heart disease, posing a significant challenge in detecting scars in such cases. To overcome this limitation, we propose a novel deep spatiotemporal residual attention network (ST-RAN) that leverages temporal and spatial information at different scales to detect scars in both ischemic and non-ischemic heart diseases. Our model comprises three primary components. First, we develop a novel factorized 4D (3D+time) convolutional layer that extracts 3D spatial features of the heart and a deep 1D kernel in the temporal direction to extract heart motion. Secondly, we enhance the power of the 4D (3D+time) layer with spatiotemporal attention to extract rich whole-heart features while tracking the long-range temporal relationship between the frames. Lastly, we introduce a residual attention block that extracts spatial and temporal features at different scales to obtain global and local motion features and to detect subtle changes in contrast related to scar. We train and validate our model on a large dataset of 3000 patients who underwent clinical CMR with various indications and different field strengths (1.5T, 3T) from multiple vendors (GE, Siemens) to demonstrate the generalizability and robustness of our model. We show that our model works on both ischemic and non-ischemic heart diseases outperforming state-of-the-art methods. Our code is available at https://github.com/HMS-CardiacMR/Myocardial_Scar_Detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baessler, B., Mannil, M., Oebel, S., Maintz, D., Alkadhi, H., Manka, R.: Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images. Radiology 286(1), 103–112 (2018)

    Article  Google Scholar 

  2. Csecs, I., et al.: Association between left ventricular mechanical deformation and myocardial fibrosis in Nonischemic cardiomyopathy. J. Am. Heart Assoc. 9(19), e016797 (2020)

    Article  Google Scholar 

  3. Fahmy, A.S., Rowin, E.J., Arafati, A., Al-Otaibi, T., Maron, M.S., Nezafat, R.: Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 24(1), 1–12 (2022)

    Article  Google Scholar 

  4. Gulani, V., Calamante, F., Shellock, F.G., Kanal, E., Reeder, S.B., et al.: Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol. 16(7), 564–570 (2017)

    Article  Google Scholar 

  5. Hatje, V., Bruland, K.W., Flegal, A.R.: Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in san Francisco bay over a 20 year record. Environ. Sci. Technol. 50(8), 4159–4168 (2016)

    Article  Google Scholar 

  6. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  7. Kim, R.J., et al.: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19), 1992–2002 (1999)

    Article  Google Scholar 

  8. Kim, R.J., et al.: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343(20), 1445–1453 (2000)

    Article  Google Scholar 

  9. Leiner, T.: Deep learning for detection of myocardial scar tissue: Goodbye to gadolinium? (2019)

    Google Scholar 

  10. Mancio, J., et al.: Machine learning phenotyping of scarred myocardium from cine in hypertrophic cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 23(4), 532–542 (2022)

    Article  Google Scholar 

  11. McDonald, R.J., et al.: Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology 289(2), 517–534 (2018)

    Article  Google Scholar 

  12. McDonald, R.J., et al.: Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275(3), 772–782 (2015)

    Article  Google Scholar 

  13. Neisius, U., et al.: Texture signatures of native myocardial T1 as novel imaging markers for identification of hypertrophic cardiomyopathy patients without scar. J. Magn. Reson. Imaging 52(3), 906–919 (2020)

    Article  Google Scholar 

  14. Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel ‘Squeeze & Excitation’ in fully convolutional networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 421–429. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_48

    Chapter  Google Scholar 

  15. Schmidt, K., Bau, M., Merschel, G., Tepe, N.: Anthropogenic gadolinium in tap water and in tap water-based beverages from fast-food franchises in six major cities in Germany. Sci. Total Environ. 687, 1401–1408 (2019)

    Article  Google Scholar 

  16. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  17. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  18. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  19. Xiong, R., et al.: On layer normalization in the transformer architecture. In: International Conference on Machine Learning, pp. 10524–10533. PMLR (2020)

    Google Scholar 

  20. Xu, C., Howey, J., Ohorodnyk, P., Roth, M., Zhang, H., Li, S.: Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning. Med. Image Anal. 59, 101568 (2020)

    Article  Google Scholar 

  21. Xu, C., et al.: Direct detection of pixel-level myocardial infarction areas via a deep-learning algorithm. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 240–249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_28

    Chapter  Google Scholar 

  22. Xu, C., Xu, L., Ohorodnyk, P., Roth, M., Chen, B., Li, S.: Contrast agent-free synthesis and segmentation of ischemic heart disease images using progressive sequential causal gans. Med. Image Anal. 62, 101668 (2020)

    Article  Google Scholar 

  23. Zhang, N., et al.: Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI. Radiology 291(3), 606–617 (2019)

    Article  Google Scholar 

  24. Zhang, Q., et al.: Toward replacing late gadolinium enhancement with artificial intelligence virtual native enhancement for gadolinium-free cardiovascular magnetic resonance tissue characterization in hypertrophic cardiomyopathy. Circulation 144(8), 589–599 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Nezafat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amyar, A. et al. (2023). Gadolinium-Free Cardiac MRI Myocardial Scar Detection by 4D Convolution Factorization. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics