Skip to main content

Attentive Deep Canonical Correlation Analysis for Diagnosing Alzheimer’s Disease Using Multimodal Imaging Genetics

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14221))

Abstract

Integration of imaging genetics data provides unprecedented opportunities for revealing biological mechanisms underpinning diseases and certain phenotypes. In this paper, a new model called attentive deep canonical correlation analysis (ADCCA) is proposed for the diagnosis of Alzheimer’s disease using multimodal brain imaging genetics data. ADCCA combines the strengths of deep neural networks, attention mechanisms, and canonical correlation analysis to integrate and exploit the complementary information from multiple data modalities. This leads to improved interpretability and strong multimodal feature learning ability. The ADCCA model is evaluated using the ADNI database with three imaging modalities (VBM-MRI, FDG-PET, and AV45-PET) and genetic SNP data. The results indicate that this approach can achieve outstanding performance and identify meaningful biomarkers for Alzheimer’s disease diagnosis. To promote reproducibility, the code has been made publicly available at https://github.com/rongzhou7/ADCCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.alzgene.org.

References

  1. Ashburner, J., Friston, K.J.: Voxel-based morphometry-the methods. Neuroimage 11(6), 805–821 (2000)

    Article  Google Scholar 

  2. Barshan, E., Fieguth, P.: Stage-wise training: An improved feature learning strategy for deep models. In: Feature extraction: modern questions and challenges, pp. 49–59. PMLR (2015)

    Google Scholar 

  3. Batmanghelich, N.K., Dalca, A., Quon, G., Sabuncu, M., Golland, P.: Probabilistic modeling of imaging, genetics and diagnosis. IEEE Trans. Med. Imaging 35(7), 1765–1779 (2016)

    Article  Google Scholar 

  4. Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. In: Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pp. 1–6 (2019)

    Google Scholar 

  5. Catania, M., et al.: A novel bio-inspired strategy to prevent amyloidogenesis and synaptic damage in Alzheimer’s disease. Mol. Psych. 1–8 (2022)

    Google Scholar 

  6. Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (mcc) over f1 score and accuracy in binary classification evaluation. BMC Genomics 21, 1–13 (2020)

    Article  Google Scholar 

  7. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134, 19–67 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, L., et al.: Identifying diagnosis-specific genotype-phenotype associations via joint multitask sparse canonical correlation analysis and classification. Bioinformatics 36, i371–i379 (2020)

    Article  Google Scholar 

  9. Du, L., et al.: Detecting genetic associations with brain imaging phenotypes in Alzheimer’s disease via a novel structured SCCA approach. Med. Image Anal. 61, 101656 (2020)

    Article  Google Scholar 

  10. Ghosal, S., et al.: Bridging imaging, genetics, and diagnosis in a coupled low-dimensional framework. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part IV, pp. 647–655. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_71

    Chapter  Google Scholar 

  11. Ghosal, S., et al.: A biologically interpretable graph convolutional network to link genetic risk pathways and imaging phenotypes of disease. In: ICLR (2022)

    Google Scholar 

  12. Hotelling, H.: Relations between two sets of variates. Biometrika 28(3/4), 321–377 (1936)

    Article  MATH  Google Scholar 

  13. Hu, W., et al.: Adaptive sparse multiple canonical correlation analysis with application to imaging (epi) genomics study of schizophrenia. IEEE Trans. Biomed. Eng. 65(2), 390–399 (2017)

    Google Scholar 

  14. Jansen, I.E., et al.: Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51(3), 404–413 (2019)

    Article  Google Scholar 

  15. Kettenring, J.R.: Canonical analysis of several sets of variables. Biometrika 58(3), 433–451 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, M., et al.: Multi-task learning based structured sparse canonical correlation analysis for brain imaging genetics. Med. Image Anal. 76, 102297 (2022)

    Article  Google Scholar 

  17. Kokhlikyan, N., et al.: Captum: A unified and generic model interpretability library for pytorch. arXiv preprint arXiv:2009.07896 (2020)

  18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Google Scholar 

  19. Liu, J., Calhoun, V.D.: A review of multivariate analyses in imaging genetics. Front. Neuroinform. 8, 29 (2014)

    Article  Google Scholar 

  20. Moon, S., Hwang, J., Lee, H.: SDGCCA: supervised deep generalized canonical correlation analysis for multi-omics integration. J. Comput. Biol. 29(8), 892–907 (2022)

    Article  Google Scholar 

  21. Mu, Y., Gage, F.H.: Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol. Neurodegener. 6(1), 1–9 (2011)

    Article  Google Scholar 

  22. Muller, S.G., et al.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. 15(4), 869–877 (2005)

    Article  Google Scholar 

  23. Shen, L., Thompson, P.M.: Brain imaging genetics: integrated analysis and machine learning. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1–1. IEEE Computer Society (2021)

    Google Scholar 

  24. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inform. Process. Syst. 30 (2017)

    Google Scholar 

  26. Viding, E., Williamson, D.E., Forbes, E.E., Hariri, A.R.: The integration of neuroimaging and molecular genetics in the study of developmental cognitive neuroscience. MIT press (2008)

    Google Scholar 

  27. Wang, M.L., Shao, W., Hao, X.K., Zhang, D.Q.: Machine learning for brain imaging genomics methods: a review. Mach. Intell. Res. 20(1), 57–78 (2023)

    Article  Google Scholar 

  28. Xin, Y., Sheng, J., Miao, M., Wang, L., Yang, Z., Huang, H.: A review of imaging genetics in Alzheimer’s disease. J. Clin. Neurosci. 100, 155–163 (2022)

    Article  Google Scholar 

  29. Zhou, H., Zhang, Yu., Chen, B.Y., Shen, L., He, L.: Sparse interpretation of graph convolutional networks for multi-modal diagnosis of Alzheimer’s disease. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part VIII, pp. 469–478. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_45

    Chapter  Google Scholar 

  30. Zhu, Y., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Science Foundation (MRI-2215789 and IIS-1909879), National Institutes of Health (U01AG068057, U01AG-066833, R01LM013463, R01MH129694, and R21MH130956), Alzheimer’s Association grant (AARG-22-972541), and Lehigh’s grants under Accelerator (S00010293), CORE (001250), and FIG (FIGAWD35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang He .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 943 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, R., Zhou, H., Chen, B.Y., Shen, L., Zhang, Y., He, L. (2023). Attentive Deep Canonical Correlation Analysis for Diagnosing Alzheimer’s Disease Using Multimodal Imaging Genetics. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics