Skip to main content

Mixing Temporal Graphs with MLP for Longitudinal Brain Connectome Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14221))

  • 3612 Accesses

Abstract

Analyses of longitudinal brain networks, i.e., graphs, are of significant interest to understand the dynamics of brain changes with respect to aging and neurodegenerative diseases. However, each subject has a graph of heterogeneous structure and time-points as the data are obtained over several years. Moreover, most existing datasets suffer from lack of samples as the images are expensive to acquire, which leads to overfitting with complex deep neural networks. To address these issues for characterizing progressively alternations of brain connectome and region-wise measures as early as possible, we develop Spatio-Temporal Graph Multi-Layer Perceptron (STGMLP) that mixes features over both graph and time spaces to classify sets of longitudinal human brain connectomes. The proposed model is made efficient and interpretable such that it can be easily adopted to medical imaging datasets and identify personalized features responsible for a specific diagnostic label. Extensive experiments show that our method achieves successful results in both performance and computational efficiency on Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Adolescence Brain Cognitive Development (ABCD) datasets independently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ba, J.L., Kiros, J.R., et al.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  2. Chen, Y., Zhang, Z., et al.: Channel-wise topology refinement graph convolution for skeleton-based action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13359–13368 (2021)

    Google Scholar 

  3. Cheng, K., Zhang, Y., et al.: Skeleton-based action recognition with shift graph convolutional network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 183–192 (2020)

    Google Scholar 

  4. Chi, H.g., Ha, M.H., et al.: Infogcn: Representation learning for human skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20186–20196 (2022)

    Google Scholar 

  5. Cho, H., Park, G., Isaiah, A., Kim, W.H.: Covariate correcting networks for identifying associations between socioeconomic factors and brain outcomes in children. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27 – October 1, 2021, Proceedings, Part VII, pp. 421–431. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_40

    Chapter  Google Scholar 

  6. Craig, A.D.: How do you feel-now? the anterior insula and human awareness. Nat. Rev. Neurosci. 10(1), 59–70 (2009)

    Article  MathSciNet  Google Scholar 

  7. Craig, A.D., Chen, K., et al.: Thermosensory activation of insular cortex. Nat. Neurosci. 3(2), 184–190 (2000)

    Article  Google Scholar 

  8. Destrieux, C., Fischl, B., et al.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1), 1–15 (2010)

    Article  Google Scholar 

  9. Ellwood-Lowe, M., Irving, C., et al.: Exploring neural correlates of behavioral and academic resilience among children in poverty. Dev. Cogn. Neurosci. 54, 101090 (2022)

    Article  Google Scholar 

  10. Failla, M.D., Peters, B.R., et al.: Intrainsular connectivity and somatosensory responsiveness in young children with ASD. Molecular Autism 8(1), 1–11 (2017)

    Article  Google Scholar 

  11. Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M.: Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII, pp. 528–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_52

    Chapter  Google Scholar 

  12. Gu, X., Hof, P.R., et al.: Anterior insular cortex and emotional awareness. J. Comp. Neurol. 521(15), 3371–3388 (2013)

    Article  Google Scholar 

  13. Guo, X., Wang, Z., et al.: Voxel-based assessment of gray and white matter volumes in Alzheimer’s disease. Neurosci. Lett. 468(2), 146–150 (2010)

    Article  Google Scholar 

  14. He, K., Zhang, X., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)

  16. Kim, M., Kim, J., et al.: Interpretable temporal graph neural network for prognostic prediction of Alzheimer’s disease using longitudinal neuroimaging data. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine, pp. 1381–1384. IEEE (2021)

    Google Scholar 

  17. Kim, W.H., Singh, V., Chung, M.K., Hinrichs, C., et al.: Multi-resolutional shape features via non-euclidean wavelets: applications to statistical analysis of cortical thickness. Neuroimage 93, 107–123 (2014)

    Article  Google Scholar 

  18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  19. Kundu, S., Lukemire, J., et al.: A novel joint brain network analysis using longitudinal Alzheimer’s disease data. Sci. Rep. 9(1), 1–18 (2019)

    Article  Google Scholar 

  20. Lenzi, D., Serra, L., Perri, R., et al.: Single domain amnestic mci: A multiple cognitive domains fMRI investigation. Neurobiol. Aging 32(9), 1542–1557 (2011)

    Article  Google Scholar 

  21. Lu, Y.C., Kapse, K., et al.: Association between socioeconomic status and in utero fetal brain development. JAMA Netw. Open 4(3), e213526–e213526 (2021)

    Article  Google Scholar 

  22. Olde Dubbelink, K.T., Hillebrand, A., et al.: Disrupted brain network topology in Parkinson’s disease: a longitudinal magnetoencephalography study. Brain 137(1), 197–207 (2014)

    Article  Google Scholar 

  23. Quarto, T., Blasi, G., et al.: Association between ability emotional intelligence and left insula during social judgment of facial emotions. PLoS ONE 11(2), e0148621 (2016)

    Article  Google Scholar 

  24. Rakesh, D., Zalesky, A., et al.: Similar but distinct-effects of different socioeconomic indicators on resting state functional connectivity: findings from the adolescent brain cognitive development (ABCD) study. Dev. Cogn. Neurosci. 51, 101005 (2021)

    Article  Google Scholar 

  25. Ribeiro, L.G., Busatto Filho, G.: Voxel-based morphometry in Alzheimer’s disease and mild cognitive impairment: systematic review of studies addressing the frontal lobe. Dementia & Neuropsychol. 10, 104–112 (2016)

    Article  Google Scholar 

  26. Rogers-Carter, M.M., Varela, J.A., et al.: Insular cortex mediates approach and avoidance responses to social affective stimuli. Nat. Neurosci. 21(3), 404–414 (2018)

    Article  Google Scholar 

  27. Seidlitz, J., Váša, F., et al.: Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97(1), 231–247 (2018)

    Article  Google Scholar 

  28. Selvaraju, R.R., Cogswell, M., et al.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  29. Spann, M.N., Bansal, R., et al.: Prenatal socioeconomic status and social support are associated with neonatal brain morphology, toddler language and psychiatric symptoms. Child Neuropsychol. 26(2), 170–188 (2020)

    Article  Google Scholar 

  30. Tolstikhin, I.O., Houlsby, N., et al.: Mlp-mixer: An all-mlp architecture for vision. In: Annual Conference on Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  31. Veit, A., Wilber, M.J., et al.: Residual networks behave like ensembles of relatively shallow networks. In: Annual Conference on Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  32. Wu, K., Taki, Y., et al.: A longitudinal study of structural brain network changes with normal aging. Front. Hum. Neurosci. 7, 113 (2013)

    Article  Google Scholar 

  33. Xu, K., Hu, W., et al.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  34. Yang, F., Isaiah, A., Kim, W.H.: COVLET: covariance-based wavelet-like transform for statistical analysis of brain characteristics in children. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII, pp. 83–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_9

    Chapter  Google Scholar 

  35. Yang, F., Meng, R., Cho, H., Wu, G., Kim, W.H.: Disentangled sequential graph autoencoder for preclinical Alzheimer’s disease characterizations from ADNI Study. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part II, pp. 362–372. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_34

    Chapter  Google Scholar 

  36. Zlatar, Z.Z., Bischoff-Grethe, A., et al.: Higher brain perfusion may not support memory functions in cognitively normal carriers of the apoe \(\varepsilon \)4 allele compared to non-carriers. Front. Aging Neurosci. 8, 151 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by NRF-2022R1A2C2092336 (50%), IITP-2022-0-00290 (20%), IITP-2019-0-01906 (AI Graduate Program at POSTECH, 10%) funded by MSIT, HU22C0171 (10%) and HU22C0168 (10%) funded by MOHW in South Korea, NIH R03AG070701 and Foundation of Hope in the U.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Hwa Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cho, H., Wu, G., Kim, W.H. (2023). Mixing Temporal Graphs with MLP for Longitudinal Brain Connectome Analysis. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics