Skip to main content

Bidirectional Mapping with Contrastive Learning on Multimodal Neuroimaging Data

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

The modeling of the interaction between brain structure and function using deep learning techniques has yielded remarkable success in identifying potential biomarkers for different clinical phenotypes and brain diseases. However, most existing studies focus on one-way mapping, either projecting brain function to brain structure or inversely. This type of unidirectional mapping approach is limited by the fact that it treats the mapping as a one-way task and neglects the intrinsic unity between these two modalities. Moreover, when dealing with the same biological brain, mapping from structure to function and from function to structure yields dissimilar outcomes, highlighting the likelihood of bias in one-way mapping. To address this issue, we propose a novel bidirectional mapping model, named Bidirectional Mapping with Contrastive Learning (BMCL), to reduce the bias between these two unidirectional mappings via ROI-level contrastive learning. We evaluate our framework on clinical phenotype and neurodegenerative disease predictions using two publicly available datasets (HCP and OASIS). Our results demonstrate the superiority of BMCL compared to several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achenbach, T.M., McConaughy, S., Ivanova, M., Rescorla, L.: Manual for the ASEBA brief problem monitor (BPM), vol. 33. ASEBA, Burlington, VT (2011)

    Google Scholar 

  2. Airavaara, M., Pletnikova, O., Doyle, M.E., Zhang, Y.E., Troncoso, J.C., Liu, Q.R.: Identification of novel GDNF isoforms and cis-antisense GDNFOS gene and their regulation in human middle temporal gyrus of Alzheimer disease. J. Biol. Chem. 286(52), 45093–45102 (2011)

    Article  Google Scholar 

  3. Bathelt, J., O’Reilly, H., Clayden, J.D., Cross, J.H., de Haan, M.: Functional brain network organisation of children between 2 and 5 years derived from reconstructed activity of cortical sources of high-density EEG recordings. Neuroimage 82, 595–604 (2013)

    Article  Google Scholar 

  4. Calhoun, V.D., Sui, J.: Multimodal fusion of brain imaging data: a key to finding the missing link (s) in complex mental illness. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1(3), 230–244 (2016)

    Google Scholar 

  5. Couppis, M.H., Kennedy, C.H.: The rewarding effect of aggression is reduced by nucleus accumbens dopamine receptor antagonism in mice. Psychopharmacology 197, 449–456 (2008)

    Article  Google Scholar 

  6. Cui, H., et al.: BrainGB: a benchmark for brain network analysis with graph neural networks. IEEE Trans. Med. Imaging (2022)

    Google Scholar 

  7. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  8. Fornito, A., Zalesky, A., Bullmore, E.: Fundamentals of Brain Network Analysis. Academic Press, Cambridge (2016)

    Google Scholar 

  9. Freeman, D., Ha, D., Metz, L.: Learning to predict without looking ahead: world models without forward prediction. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  10. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  11. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  12. LaMontagne, P.J., et al.: Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv pp. 2019–2012 (2019)

    Google Scholar 

  13. Lee, G., Nho, K., Kang, B., Sohn, K.A., Kim, D.: Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Sci. Rep. 9(1), 1952 (2019)

    Article  Google Scholar 

  14. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: International Conference on Machine Learning, pp. 3734–3743. PMLR (2019)

    Google Scholar 

  15. Li, X., et al.: BrainGNN: interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  16. Liu, Y., Ge, E., Qiang, N., Liu, T., Ge, B.: Spatial-temporal convolutional attention for mapping functional brain networks. arXiv preprint arXiv:2211.02315 (2022)

  17. Peterson, C.K., Shackman, A.J., Harmon-Jones, E.: The role of asymmetrical frontal cortical activity in aggression. Psychophysiology 45(1), 86–92 (2008)

    Google Scholar 

  18. Piras, I.S., et al.: Transcriptome changes in the Alzheimer’s disease middle temporal gyrus: importance of RNA metabolism and mitochondria-associated membrane genes. J. Alzheimers Dis. 70(3), 691–713 (2019)

    Article  Google Scholar 

  19. Qi, S., Meesters, S., Nicolay, K., ter Haar Romeny, B.M., Ossenblok, P.: The influence of construction methodology on structural brain network measures: a review. J. Neurosci. Methods 253, 170–182 (2015)

    Article  Google Scholar 

  20. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  21. Tang, H., et al.: Hierarchical brain embedding using explainable graph learning. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)

    Google Scholar 

  22. Tang, H., et al.: Signed graph representation learning for functional-to-structural brain network mapping. Med. Image Anal. 83, 102674 (2023)

    Article  Google Scholar 

  23. Tang, H., Ma, G., Guo, L., Fu, X., Huang, H., Zhan, L.: Contrastive brain network learning via hierarchical signed graph pooling model. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  24. Tewarie, P., et al.: Mapping functional brain networks from the structural connectome: relating the series expansion and eigenmode approaches. Neuroimage 216, 116805 (2020)

    Article  Google Scholar 

  25. Van Essen, D.C., et al.: The Wu-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Google Scholar 

  26. Whitfield-Gabrieli, S., Nieto-Castanon, A.: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2(3), 125–141 (2012)

    Article  Google Scholar 

  27. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057. PMLR (2015)

    Google Scholar 

  28. Yan, J., et al.: Modeling spatio-temporal patterns of holistic functional brain networks via multi-head guided attention graph neural networks (multi-head GaGNNs). Med. Image Anal. 80, 102518 (2022)

    Article  Google Scholar 

  29. Yeh, C.H., Jones, D.K., Liang, X., Descoteaux, M., Connelly, A.: Mapping structural connectivity using diffusion MRI: challenges and opportunities. J. Magn. Reson. Imaging 53(6), 1666–1682 (2021)

    Article  Google Scholar 

  30. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  31. Zhang, L., Wang, L., Zhu, D., Initiative, A.D.N., et al.: Predicting brain structural network using functional connectivity. Med. Image Anal. 79, 102463 (2022)

    Article  Google Scholar 

  32. Zhang, W., Zhan, L., Thompson, P., Wang, Y.: Deep representation learning for multimodal brain networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 613–624. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_60

    Chapter  Google Scholar 

  33. Zhen, L., Hu, P., Wang, X., Peng, D.: Deep supervised cross-modal retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10394–10403 (2019)

    Google Scholar 

Download references

Acknowledgments

This study was partially supported by NIH (R01AG071243, R01MH125928, R21AG065942, R01EY032125, and U01AG068057) and NSF (IIS 2045848 and IIS 1837956).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haoteng Tang or Liang Zhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, K. et al. (2023). Bidirectional Mapping with Contrastive Learning on Multimodal Neuroimaging Data. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics