Skip to main content

Asymmetric Contour Uncertainty Estimation for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Aleatoric uncertainty estimation is a critical step in medical image segmentation. Most techniques for estimating aleatoric uncertainty for segmentation purposes assume a Gaussian distribution over the neural network’s logit value modeling the uncertainty in the predicted class. However, in many cases, such as image segmentation, there is no uncertainty about the presence of a specific structure, but rather about the precise outline of that structure. For this reason, we explicitly model the location uncertainty by redefining the conventional per-pixel segmentation task as a contour regression problem. This allows for modeling the uncertainty of contour points using a more appropriate multivariate distribution. Additionally, as contour uncertainty may be asymmetric, we use a multivariate skewed Gaussian distribution. In addition to being directly interpretable, our uncertainty estimation method outperforms previous methods on three datasets using two different image modalities. Code is available at: https://github.com/ThierryJudge/contouring-uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayhan, M.S., Berens, P.: Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks. In: International Conference on Medical Imaging with Deep Learning (2018)

    Google Scholar 

  2. Azzalini, A.: Institute of Mathematical Statistics Monographs: The Skew-Normal and Related Families Series Number 3. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  3. Baumgartner, C.F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_14

    Chapter  Google Scholar 

  4. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  5. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 1613–1622. PMLR, Lille, France, 07–09 July 2015

    Google Scholar 

  6. Camarasa, R., et al.: Quantitative comparison of Monte-Carlo dropout uncertainty measures for multi-class segmentation. In: Sudre, C.H., et al. (eds.) UNSURE/GRAIL -2020. LNCS, vol. 12443, pp. 32–41. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60365-6_4

    Chapter  Google Scholar 

  7. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. CoRR abs/1706.05587 (2017)

    Google Scholar 

  8. Corbière, C., Thome, N., Bar-Hen, A., Cord, M., Pérez, P.: Addressing failure prediction by learning model confidence. In: Advances in Neural Information Processing Systems, vol. 32, pp. 2902–2913. Curran Associates, Inc. (2019)

    Google Scholar 

  9. DeVries, T., Taylor, G.W.: Leveraging uncertainty estimates for predicting segmentation quality. CoRR abs/1807.00502 (2018)

    Google Scholar 

  10. Gaggion, N., Mansilla, L., Mosquera, C., Milone, D.H., Ferrante, E.: Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis. IEEE Trans. Med. Imaging (2022)

    Google Scholar 

  11. Gal, Y., Ghahramani, Z.: Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv abs/1506.02158 (2015)

    Google Scholar 

  12. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning. ICML’16, vol. 48, pp. 1050–1059. JMLR.org (2016)

    Google Scholar 

  13. Gomez, A., et al.: Left ventricle contouring of apical three-chamber views on 2d echocardiography. In: Aylward, S., Noble, J.A., Hu, Y., Lee, S.L., Baum, Z., Min, Z. (eds.) ASMUS 2022. LNCS, vol. 13565, pp. 96–105. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16902-1_10

    Chapter  Google Scholar 

  14. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  15. Judge, T., Bernard, O., Porumb, M., Chartsias, A., Beqiri, A., Jodoin, P.M.: Crisp - reliable uncertainty estimation for medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022MICCAI 2022. LNCS, vol. 13438, pp. 492–502. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_47

    Chapter  Google Scholar 

  16. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 5574–5584. Curran Associates, Inc. (2017)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  18. Kohl, S., et al.: A probabilistic u-net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)

    Google Scholar 

  19. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  20. Leclerc, S., et al.: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 38(9), 2198–2210 (2019)

    Article  Google Scholar 

  21. Nibali, A., He, Z., Morgan, S., Prendergast, L.: Numerical coordinate regression with convolutional neural networks. arXiv preprint arXiv:1801.07372 (2018)

  22. Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: Proceedings of the 22nd International Conference on Machine Learning. ICML ’05, pp. 625–632. Association for Computing Machinery, New York, NY, USA (2005)

    Google Scholar 

  23. Pakdaman Naeini, M., Cooper, G., Hauskrecht, M.: Obtaining well calibrated probabilities using Bayesian binning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29, no. 1, February 2015

    Google Scholar 

  24. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: a deep neural network architecture for real-time semantic segmentation. CoRR abs/1606.02147 (2016)

    Google Scholar 

  25. Schobs, L.A., Swift, A.J., Lu, H.: Uncertainty estimation for heatmap-based landmark localization. IEEE Trans. Med. Imaging 42(4), 1021–1034 (2023)

    Article  Google Scholar 

  26. Shiraishi, J., et al.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174, 71–74 (2000)

    Article  Google Scholar 

  27. Thaler, F., Payer, C., Urschler, M., Štern, D.: Modeling annotation uncertainty with Gaussian heatmaps in landmark localization. Mach. Learn. Biomed. Imaging 1, 1–27 (2021)

    Article  Google Scholar 

  28. Tornetta, G.N.: Entropy methods for the confidence assessment of probabilistic classification models. Statistica (Bologna) 81(4), 383–398 (2021)

    MATH  Google Scholar 

  29. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Judge .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1842 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Judge, T., Bernard, O., Cho Kim, WJ., Gomez, A., Chartsias, A., Jodoin, PM. (2023). Asymmetric Contour Uncertainty Estimation for Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics