Skip to main content

A Model-Agnostic Framework for Universal Anomaly Detection of Multi-organ and Multi-modal Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14222))

  • 3814 Accesses

Abstract

The recent success of deep learning relies heavily on the large amount of labeled data. However, acquiring manually annotated symptomatic medical images is notoriously time-consuming and laborious, especially for rare or new diseases. In contrast, normal images from symptom-free healthy subjects without the need of manual annotation are much easier to acquire. In this regard, deep learning based anomaly detection approaches using only normal images are actively studied, achieving significantly better performance than conventional methods. Nevertheless, the previous works committed to develop a specific network for each organ and modality separately, ignoring the intrinsic similarity among images within medical field. In this paper, we propose a model-agnostic framework to detect the abnormalities of various organs and modalities with a single network. By imposing organ and modality classification constraints along with center constraint on the disentangled latent representation, the proposed framework not only improves the generalization ability of the network towards the simultaneous detection of anomalous images with various organs and modalities, but also boosts the performance on each single organ and modality. Extensive experiments with four different baseline models on three public datasets demonstrate the superiority of the proposed framework as well as the effectiveness of each component.

Y. Zhang and D. Lu—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note in this work we use the term ‘normal distribution’ to refer to the distribution of images of normal, healthy subjects, instead of the Gaussian distribution.

References

  1. Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression for novelty detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 481–490 (2019)

    Google Scholar 

  2. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  3. Bilic, P., et al.: The liver tumor segmentation benchmark (LiTS). arXiv preprint arXiv:1901.04056 (2019)

  4. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1705–1714 (2019)

    Google Scholar 

  5. Han, C., et al.: MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC Bioinform. 22(2), 1–20 (2021)

    Google Scholar 

  6. Jaeger, S., Candemir, S., Antani, S., Wáng, Y.X.J., Lu, P.X., Thoma, G.: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 4(6), 475 (2014)

    Google Scholar 

  7. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  8. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  9. Perera, P., Nallapati, R., Xiang, B.: OCGAN: one-class novelty detection using GANs with constrained latent representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2898–2906 (2019)

    Google Scholar 

  10. Perera, P., Patel, V.M.: Learning deep features for one-class classification. IEEE Trans. Image Process. 28(11), 5450–5463 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pouyanfar, S., et al.: A survey on deep learning: algorithms, techniques, and applications. ACM Comput. Surv. 51(5), 1–36 (2018)

    Article  Google Scholar 

  12. Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402. PMLR (2018)

    Google Scholar 

  13. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  14. Shehata, M., et al.: Computer-aided diagnostic system for early detection of acute renal transplant rejection using diffusion-weighted MRI. IEEE Trans. Biomed. Eng. 66(2), 539–552 (2018)

    Article  MathSciNet  Google Scholar 

  15. Tuluptceva, N., Bakker, B., Fedulova, I., Schulz, H., Dylov, D.V.: Anomaly detection with deep perceptual autoencoders. arXiv preprint arXiv:2006.13265 (2020)

  16. Zeng, L.L., et al.: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine 30, 74–85 (2018)

    Article  Google Scholar 

  17. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  18. Zhao, J., Zhang, Y., He, X., Xie, P.: COVID-CT-dataset: a CT scan dataset about COVID-19. arXiv preprint arXiv:2003.13865 (2020)

  19. Zhou, H.Y., Chen, X., Zhang, Y., Luo, R., Wang, L., Yu, Y.: Generalized radiograph representation learning via cross-supervision between images and free-text radiology reports. Nat. Mach. Intell. 4(1), 32–40 (2022)

    Article  Google Scholar 

  20. Zhou, K., et al.: Memorizing structure-texture correspondence for image anomaly detection. IEEE Trans. Neural Netw. Learn. Syst. 2335–2349 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFE0113900) and the National Key R &D Program of China under Grant 2020AAA0109500/2020AAA0109501.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liansheng Wang or Dong Wei .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 561 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Lu, D., Ning, M., Wang, L., Wei, D., Zheng, Y. (2023). A Model-Agnostic Framework for Universal Anomaly Detection of Multi-organ and Multi-modal Images. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics