Skip to main content

Maximum Entropy on Erroneous Predictions: Improving Model Calibration for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14222))

Abstract

Modern deep neural networks achieved remarkable progress in medical image segmentation tasks. However, it has recently been observed that they tend to produce overconfident estimates, even in situations of high uncertainty, leading to poorly calibrated and unreliable models. In this work we introduce Maximum Entropy on Erroneous Predictions (MEEP), a training strategy for segmentation networks which selectively penalizes overconfident predictions, focusing only on misclassified pixels. Our method is agnostic to the neural architecture, does not increase model complexity and can be coupled with multiple segmentation loss functions. We benchmark the proposed strategy in two challenging segmentation tasks: white matter hyperintensity lesions in magnetic resonance images (MRI) of the brain, and atrial segmentation in cardiac MRI. The experimental results demonstrate that coupling MEEP with standard segmentation losses leads to improvements not only in terms of model calibration, but also in segmentation quality.

J. Dolz and E. Ferrante—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathcal {L}_{Seg}\) can take the form of any segmentation loss (e.g., CE or Dice).

  2. 2.

    Code: https://github.com/agosl/Maximum-Entropy-on-Erroneous-Predictions/.

  3. 3.

    We refer to Fig 3 and Appendix I in [24] for a detailed explanation regarding the different energies for binary classification and their derivatives.

References

  1. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)

    Google Scholar 

  2. Karimi, D., Gholipour, A.: Improving calibration and out-of-distribution detection in medical image segmentation with convolutional neural networks. arXiv preprint arXiv:2004.06569 (2020)

  3. Czolbe, S., Arnavaz, K., Krause, O., Feragen, A.: Is segmentation uncertainty useful? In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 715–726. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_55

    Chapter  Google Scholar 

  4. Liu, B., Ben Ayed, I., Galdran, A., Dolz, J.: The devil is in the margin: margin-based label smoothing for network calibration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 80–88 (2022)

    Google Scholar 

  5. Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P., Dokania, P.: Calibrating deep neural networks using focal loss. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  6. Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39(12), 3868–3878 (2020)

    Article  Google Scholar 

  7. Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision trees and Naive Bayesian classifiers. ICML. 1, 609–616 (2001)

    Google Scholar 

  8. Naeini, M.P., Cooper, G., Hauskrecht, M.: Obtaining well calibrated probabilities using Bayesian binning. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  9. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: International Conference on Machine Learning, pp. 1613–1622 (2015)

    Google Scholar 

  10. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  11. Hernández-Lobato, J.M., Adams, R.: Probabilistic backpropagation for scalable learning of Bayesian neural networks. In: International Conference on Machine Learning, pp. 1861–1869 (2015)

    Google Scholar 

  12. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  13. Stickland, A.C., Murray, I.: Diverse ensembles improve calibration. In: ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning (2020)

    Google Scholar 

  14. Wen, Y., Tran, D., Ba, J.: Batchensemble: an alternative approach to efficient ensemble and lifelong learning. In: ICLR (2020)

    Google Scholar 

  15. Larrazabal, A.J., Martínez, C., Dolz, J., Ferrante, E.: Orthogonal ensemble networks for biomedical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 594–603. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_56

    Chapter  Google Scholar 

  16. Ovadia, Y., et al.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  17. Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G.: Regularizing neural networks by penalizing confident output distributions. In: International Conference on Learning Representations - Workshop Track (2017)

    Google Scholar 

  18. Müller, R., Kornblith, S., Hinton, G.: When does label smoothing help? In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  19. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  20. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In,: Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  21. Sander, J., de Vos, B.D., Wolterink, J.M., Išgum, I.: Towards increased trustworthiness of deep learning segmentation methods on cardiac MRI. In: Medical Imaging 2019: Image Processing, vol. 10949, p. 1094919. International Society for Optics and Photonics (2019)

    Google Scholar 

  22. Islam, M., Glocker, B.: Spatially varying label smoothing: capturing uncertainty from expert annotations. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 677–688. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_52

    Chapter  Google Scholar 

  23. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  24. Belharbi, S., Rony, J., Dolz, J., Ayed, I.B., McCaffrey, L., Granger, E.: Deep interpretable classification and weakly-supervised segmentation of histology images via max-min uncertainty. IEEE Trans. Med. Imaging (TMI) (2021)

    Google Scholar 

  25. Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass probability estimates. In: Proceedings of the eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 694–699 (2002)

    Google Scholar 

  26. Platt, J., et al.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10(3), 61–74 (1999)

    Google Scholar 

  27. Xiong, Z., et al.: A global benchmark of algorithms for segmenting late gadolinium-enhanced cardiac magnetic resonance imaging. Med. Image Anal. (2020)

    Google Scholar 

  28. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  29. Kuijf, H.J., et al.: Standardized assessment of automatic segmentation of white matter hyperintensities and results of the WMH segmentation challenge. IEEE Trans. Med. Imaging 38(11), 2556–2568 (2019)

    Article  Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  32. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78(1), 1–3 (1950)

    Article  Google Scholar 

  33. Wallace, B.C., Dahabreh, I.J.: Improving class probability estimates for imbalanced data. Knowl. Inf. Syst. 41(1), 33–52 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge NVIDIA Corporation with the donation of the GPUs used for this research, the support of Universidad Nacional del Litoral with the CAID program and ANPCyT (PRH-2019-00009). EF is supported by the Google Award for Inclusion Research (AIR) Program. AL was partiallly supported by the Emerging Leaders in the Americas Program (ELAP) program. We also thank Calcul Quebec and Compute Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Ferrante .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 528 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larrazabal, A.J., Martínez, C., Dolz, J., Ferrante, E. (2023). Maximum Entropy on Erroneous Predictions: Improving Model Calibration for Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics