Skip to main content

CheXstray: A Real-Time Multi-Modal Monitoring Workflow for Medical Imaging AI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Clinical AI applications, particularly medical imaging, are increasingly being adopted in healthcare systems worldwide. However, a crucial question remains: what happens after the AI model is put into production? We present our novel multi-modal model drift framework capable of tracking drift without contemporaneous ground truth using only readily available inputs, namely DICOM metadata, image appearance representation from a variational autoencoder (VAE), and model output probabilities. CheXStray was developed and tested using CheXpert, PadChest and Pediatric Pneumonia Chest X-ray datasets and we demonstrate that our framework generates a strong proxy for ground truth performance. In this work, we offer new insights into the challenges and solutions for observing deployed medical imaging AI and make three key contributions to real-time medical imaging AI monitoring: (1) proof-of-concept for medical imaging drift detection including use of VAE and domain specific statistical methods (2) a multi-modal methodology for measuring and unifying drift metrics (3) new insights into the challenges and solutions for observing deployed medical imaging AI. Our framework is released as open-source tools so that others may easily run their own workflows and build upon our work. Code available at: https://github.com/microsoft/MedImaging-ModelDriftMonitoring

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamens, S., Dhunnoo, P., Meskó, B.: The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit. Med. 3(1), 1–8 (2020)

    Article  Google Scholar 

  2. Bustos, A., Pertusa, A., Salinas, J.M., de la Iglesia-Vayá, M.: PadChest: a large chest x-ray image dataset with multi-label annotated reports. Med. Image Anal. 66, 101797 (2020). https://doi.org/10.1016/j.media.2020.101797

    Article  Google Scholar 

  3. Cao, T., Huang, C., Hui, D.Y.T., Cohen, J.P.: A benchmark of medical out of distribution detection. In: Uncertainty and Robustness in Deep Learning Workshop at ICML (2020), http://arxiv.org/abs/2007.04250

  4. Dikici, E., Bigelow, M., Prevedello, L.M., White, R.D., Erdal, B.S.: Integrating AI into radiology workflow: levels of research, production, and feedback maturity. J. Med. Imag. 7(1), 016502 (2020)

    Article  Google Scholar 

  5. Dodge, Y.: Kolmogorov-Smirnov Test, pp. 283–287. Springer, New York (2008). https://doi.org/10.1007/978-0-387-32833-1_214

  6. Eche, T., Schwartz, L.H., Mokrane, F.Z., Dercle, L.: Toward generalizability in the deployment of artificial intelligence in radiology: role of computation stress testing to overcome underspecification. Radiol. Artif. Intell. 3(6), e210097 (2021)

    Article  Google Scholar 

  7. Finlayson, S.G., et al.: The clinician and dataset shift in artificial intelligence. N. Engl. J. Med. 385(3), 283–286 (2021)

    Article  Google Scholar 

  8. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Computer Vision and Pattern Recognition (2017), https://arxiv.org/abs/1608.06993

  9. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. CoRR abs/1901.07031 (2019), http://arxiv.org/abs/1901.07031

  10. Kermany, D., Zhang, K., Goldbaum, M., et al.: Labeled optical coherence tomography (OCT) and chest x-ray images for classification. Mendeley data 2(2) (2018)

    Google Scholar 

  11. Klaise, J., Van Looveren, A., Cox, C., Vacanti, G., Coca, A.: Monitoring and explainability of models in production. arXiv preprint arXiv:2007.06299 (2020)

  12. van Leeuwen, K.G., Schalekamp, S., Rutten, M.J.C.M., van Ginneken, B., de Rooij, M.: Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur. Radiol. 31(6), 3797–3804 (2021). https://doi.org/10.1007/s00330-021-07892-z

    Article  Google Scholar 

  13. Mahajan, V., Venugopal, V.K., Murugavel, M., Mahajan, H.: The algorithmic audit: working with vendors to validate radiology-AI algorithms—how we do it. Acad. Radiol. 27(1), 132–135 (2020)

    Article  Google Scholar 

  14. Mehrizi, M.H.R., van Ooijen, P., Homan, M.: Applications of artificial intelligence (AI) in diagnostic radiology: a technography study. Eur. Radiol. 31(4), 1805–1811 (2021)

    Article  Google Scholar 

  15. Mildenberger, P., Eichelberg, M., Martin, E.: Introduction to the DICOM standard. Eur. Radiol. 12(4), 920–927 (2002)

    Article  Google Scholar 

  16. Pearson, K.: X. on the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinb. Dublin Philos. Mag. J. Sci. 50(302), 157–175 (1900). https://doi.org/10.1080/14786440009463897

    Article  MATH  Google Scholar 

  17. Sculley, D., et al.: Machine learning: the high interest credit card of technical debt. In: NIPS Workshop 2014 (2014)

    Google Scholar 

  18. Shafaei, A., Schmidt, M., Little, J.J.: Does your model know the digit 6 is not a cat? a less biased evaluation of “outlier” detectors. CoRR abs/1809.04729 (2018), http://arxiv.org/abs/1809.04729

  19. Tadavarthi, Y., et al.: The state of radiology AI: considerations for purchase decisions and current market offerings. Radiol. Artif. Intell. 2(6), e200004 (2020)

    Article  Google Scholar 

  20. Tariq, A., et al.: Current clinical applications of artificial intelligence in radiology and their best supporting evidence. J. Am. Coll. Radiol. 17(11), 1371–1381 (2020)

    Article  Google Scholar 

  21. West, E., Mutasa, S., Zhu, Z., Ha, R.: Global trend in artificial intelligence-based publications in radiology from 2000 to 2018. Am. J. Roentgenol. 213(6), 1204–1206 (2019)

    Article  Google Scholar 

  22. Wiggins, W.F., et al.: Imaging AI in practice: a demonstration of future workflow using integration standards. Radiol. Artif. Intell. 3(6), e210152 (2021)

    Article  Google Scholar 

  23. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient GAN-based anomaly detection. arXiv preprint arXiv:1802.06222 (2018)

Download references

Acknowledgments

This work was was supported in part by the Stanford Center for Artificial Intelligence in Medicine and Imaging (AIMI) and Microsoft Health and Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameson Merkow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Merkow, J. et al. (2023). CheXstray: A Real-Time Multi-Modal Monitoring Workflow for Medical Imaging AI. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics