Skip to main content

Enabling Geometry Aware Learning Through Differentiable Epipolar View Translation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Epipolar geometry is exploited in several applications in the field of Cone-Beam Computed Tomography (CBCT) imaging. By leveraging consistency conditions between multiple views of the same scene, motion artifacts can be minimized, the effects of beam hardening can be reduced, and segmentation masks can be refined. In this work, we explore the idea of enabling deep learning models to access the known geometrical relations between views. This implicit 3D information can potentially enhance various projection domain algorithms such as segmentation, detection, or inpainting. We introduce a differentiable feature translation operator, which uses available projection matrices to calculate and integrate over the epipolar line in a second view. As an example application, we evaluate the effects of the operator on the task of projection domain metal segmentation. By re-sampling a stack of projections into orthogonal view pairs, we segment each projection image jointly with a second view acquired roughly 90\(^\circ \) apart. The comparison with an equivalent single-view segmentation model reveals an improved segmentation performance of 0.95 over 0.91 measured by the dice coefficient. By providing an implementation of this operator as an open-access differentiable layer, we seek to enable future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/maxrohleder/FUME.

  2. 2.

    https://github.com/maxrohleder/FUME.

References

  1. Aichert, A., et al.: Epipolar consistency in transmission imaging. IEEE Trans. Med. Imaging 34(11), 2205–2219 (2015). https://doi.org/10.1109/TMI.2015.2426417

    Article  Google Scholar 

  2. Gottschalk, T.M., Maier, A., Kordon, F., Kreher, B.W.: Learning-based patch-wise metal segmentation with consistency check. In: Bildverarbeitung für die Medizin 2021. I, pp. 4–9. Springer, Wiesbaden (2021). https://doi.org/10.1007/978-3-658-33198-6_4

    Chapter  Google Scholar 

  3. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2004). https://doi.org/10.1017/CBO9780511811685

  4. Preuhs, A., et al.: Symmetry prior for epipolar consistency. IJCARS 14(9), 1541–1551 (2019). https://doi.org/10.1007/s11548-019-02027-8

    Article  Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  6. Syben, C., Michen, M., Stimpel, B., Seitz, S., Ploner, S., Maier, A.K.: Technical Note: PYRONN: Python reconstruction operators in neural networks. Med. Phys. 46(11), 5110–5115 (2019). https://doi.org/10.1002/mp.13753

    Article  Google Scholar 

  7. Unberath, M., Aichert, A., Achenbach, S., Maier, A.: Improving segmentation quality in rotational angiography using epipolar consistency. In: Balocco, S. (ed.) Proc MICCAI CVII-STENT, Athens, pp. 1–8 (2016)

    Google Scholar 

  8. Unberath, M., Aichert, A., Achenbach, S., Maier, A.: Consistency-based respiratory motion estimation in rotational angiography. Med. Phys. 44(9), e113–e124 (2017)

    Article  Google Scholar 

  9. Unberath, M., et al.: DeepDRR – a catalyst for machine learning in fluoroscopy-guided procedures. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 98–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_12

    Chapter  Google Scholar 

  10. Wang, A., et al.: Low-dose preview for patient-specific, task-specific technique selection in cone-beam CT. Med. Phys. 41(7), 071915 (2014). https://doi.org/10.1118/1.4884039

    Article  Google Scholar 

  11. Würfl, T., Hoffmann, M., Aichert, A., Maier, A.K., Maaß, N., Dennerlein, F.: Calibration-free beam hardening reduction in x-ray CBCT using the epipolar consistency condition and physical constraints. Med. Phys. 46(12), e810–e822 (2019). https://doi.org/10.1002/mp.13625

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Rohleder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rohleder, M. et al. (2023). Enabling Geometry Aware Learning Through Differentiable Epipolar View Translation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics