Skip to main content

Minimal-Supervised Medical Image Segmentation via Vector Quantization Memory

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14222))

  • 3566 Accesses

Abstract

Medical imaging segmentation is a critical key task for computer-assisted diagnosis and disease monitoring. However, collecting a large-scale medical dataset with well-annotation is time-consuming and requires domain knowledge. Reducing the number of annotations poses two challenges: obtaining sufficient supervision and generating high-quality pseudo labels. To address these, we propose a universal framework for annotation-efficient medical segmentation, which is capable of handling both scribble-supervised and point-supervised segmentation. Our approach includes an auxiliary reconstruction branch that provides more supervision and backwards sufficient gradients for learning visual representations. Besides, a novel pseudo label generation branch utilizes the Vector Quantization (VQ) bank to store texture-oriented and global features for generating pseudo labels. To boost the model training, we generate the high-quality pseudo labels by mixing the segmentation prediction and pseudo labels from the VQ bank. The experimental results on the ACDC MRI segmentation dataset demonstrate effectiveness of our designed method. We obtain a comparable performance (0.86 vs. 0.87 DSC score) with a few points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, W., et al.: Semi-supervised learning for network-based cardiac MR image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

    Chapter  Google Scholar 

  2. Bernard, O., Lalande, A., Zotti, C., et al.: Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  3. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  4. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: CVPR, pp. 2613–2622 (2021)

    Google Scholar 

  5. Dolz, J., Desrosiers, C., Ayed, I.B.: Teach me to segment with mixed supervision: confident students become masters. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 517–529. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_40

    Chapter  Google Scholar 

  6. Dorent, R., et al.: Inter extreme points geodesics for end-to-end weakly supervised image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 615–624. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_57

    Chapter  Google Scholar 

  7. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  8. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. Adv. Neural Inf. Process. Syst. 17 (2004)

    Google Scholar 

  9. Hu, X., Zeng, D., Xu, X., Shi, Y.: Semi-supervised contrastive learning for label-efficient medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 481–490. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_45

    Chapter  Google Scholar 

  10. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  11. Kim, B., Ye, J.C.: Mumford-shah loss functional for image segmentation with deep learning. IEEE Trans. Image Process. 29, 1856–1866 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 896 (2013)

    Google Scholar 

  13. Lee, H., Jeong, W.-K.: Scribble2Label: scribble-supervised cell segmentation via self-generating pseudo-labels with consistency. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_2

    Chapter  Google Scholar 

  14. Li, S., et al.: Few-shot domain adaptation with polymorphic transformers. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 330–340. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_31

    Chapter  Google Scholar 

  15. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3159–3167 (2016)

    Google Scholar 

  16. Liu, X., et al.: Weakly supervised segmentation of covid19 infection with scribble annotation on ct images. Pattern Recogn. 122, 108341 (2022)

    Article  Google Scholar 

  17. Luo, W., Yang, M.: Semi-supervised semantic segmentation via strong-weak dual-branch network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 784–800. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_46

    Chapter  Google Scholar 

  18. Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8801–8809 (2021)

    Google Scholar 

  19. Luo, X., et al.: Scribble-supervised medical image segmentation via dual-branch network and dynamically mixed pseudo labels supervision. arXiv preprint arXiv:2203.02106 (2022)

  20. Luo, X., et al.: Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 318–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_30

    Chapter  Google Scholar 

  21. Paszke, A., Gross, S., Massa, F., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8024–8035 (2019)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Rother, C., Kolmogorov, V., Blake, A.: “grabcut’’ interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23(3), 309–314 (2004)

    Article  Google Scholar 

  24. Tang, M., Perazzi, F., Djelouah, A., Ben Ayed, I., Schroers, C., Boykov, Y.: On regularized losses for weakly-supervised cnn segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 507–522 (2018)

    Google Scholar 

  25. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. Adv. Neural Inf. Process. Syst. 30, 1195–1204 (2017)

    Google Scholar 

  26. Valvano, G., Leo, A., Tsaftaris, S.A.: Learning to segment from scribbles using multi-scale adversarial attention gates. IEEE Trans. Med. Imaging 40(8), 1990–2001 (2021)

    Article  Google Scholar 

  27. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: NeurIPS (2017)

    Google Scholar 

  28. Vezhnevets, V., Konouchine, V.: Growcut: interactive multi-label nd image segmentation by cellular automata. In: Proceedings of Graphicon, vol. 1, pp. 150–156. Citeseer (2005)

    Google Scholar 

  29. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR, pp. 2517–2526 (2019)

    Google Scholar 

  30. Wang, X., Gao, J., Long, M., Wang, J.: Self-tuning for data-efficient deep learning. In: International Conference on Machine Learning, pp. 10738–10748. PMLR (2021)

    Google Scholar 

  31. Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 297–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28

    Chapter  Google Scholar 

  32. Xu, Y., Xu, X., Fu, H., Wang, M., Goh, R.S.M., Liu, Y.: Facing annotation redundancy: Oct layer segmentation with only 10 annotated pixels per layer. In: Xu, X., Li, X., Mahapatra, D., Cheng, L., Petitjean, C., Fu, H. (eds.) REMIA 2022. LNCS, pp. 126–136. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16876-5_13

    Chapter  Google Scholar 

  33. Xu, Y., et al.: Partially-supervised learning for vessel segmentation in ocular images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 271–281. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_26

    Chapter  Google Scholar 

  34. Xu, Y., et al.: Crowd counting with partial annotations in an image. In: ICCV, pp. 15570–15579 (2021)

    Google Scholar 

  35. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  36. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  37. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47

    Chapter  Google Scholar 

Download references

Acknowledgement

This research/project is supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG2-TC-2021-003) This work was supported by the Agency for Science, Technology and Research (A*STAR) through its AME Programmatic Funding Scheme Under Project A20H4b0141. This work was partially supported by A*STAR Central Research Fund "A Secure and Privacy Preserving AI Platform for Digital Health”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxing Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y. et al. (2023). Minimal-Supervised Medical Image Segmentation via Vector Quantization Memory. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics