Skip to main content

Enhance Early Diagnosis Accuracy of Alzheimer’s Disease by Elucidating Interactions Between Amyloid Cascade and Tau Propagation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14222))

  • 3648 Accesses

Abstract

Amyloid-beta (A\(\beta \)) deposition and tau neurofibrillary tangles (tau) are important hallmarks of Alzheimer’s disease (AD). Although converging evidence shows that the interaction between A\(\beta \) and tau is the gateway to understanding the etiology of AD, these two AD hallmarks are often treated as independent variables in the current state-of-the-art early diagnostic model for AD, which might be partially responsible for the issue of lacking explainability. Inspired by recent progress in systems biology, we formulate the evolving biological process of A\(\beta \) cascade and tau propagation into a closed-loop feedback system where the system dynamics are constrained by region-to-region white matter fiber tracts in the brain. On top of this, we conceptualize that A\(\beta \)-tau interaction, following the principle of optimal control, underlines the pathophysiological mechanism of AD. In this context, we propose a deep reaction-diffusion model that leverages the capital of deep learning and insights into systems biology, which allows us to (1) enhance the prediction accuracy of developing AD and (2) uncover the latent control mechanism of A\(\beta \)-tau interactions. We have evaluated our novel explainable deep model on the neuroimaging data in Alzheimer’s Disease Neuroimaging Initiative (ADNI), where we achieve not only a higher prediction accuracy for disease progression but also a better understanding of disease etiology than conventional (“black-box”) deep models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20(3), 353–364 (2017)

    Article  Google Scholar 

  2. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloom, G.S.: Amyloid-ß and Tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 71(4), 505–508 (2014)

    Article  Google Scholar 

  4. Brunton, S.L., Kutz, J.N.: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2022)

    Google Scholar 

  5. Byers, R.: Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra Appl. 85, 267–279 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cecchin, D., Garibotto, V., Law, I., Goffin, K.: Pet imaging in neurodegeneration and neuro-oncology: variants and pitfalls. Semin. Nucl. Med. 51(5), 408–418 (2021)

    Article  Google Scholar 

  7. Dan, T., Cai, H., Huang, Z., Laurienti, P., Kim, W.H., Wu, G.: Neuro-RDM: an explainable neural network landscape of reaction-diffusion model for cognitive task recognition. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 365–374 (2022)

    Google Scholar 

  8. Destrieux, C., Fischl, B., Dale, A., Halgren, E.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1), 1–15 (2010)

    Article  Google Scholar 

  9. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Elam, J.S., et al.: The human connectome project: a retrospective. Neuroimage 244, 118543 (2021)

    Article  Google Scholar 

  11. Guzman-Velez, E., et al.: Amyloid-ß and tau pathologies relate to distinctive brain dysconnectomics in autosomal-dominant Alzheimer’s disease. Alzheimer’s Dementia 17(S4), e056134 (2021)

    Article  Google Scholar 

  12. Hao, W., Friedman, A.: Mathematical model on Alzheimer’s disease. BMC Syst. Biol. 10(1), 108 (2016)

    Article  Google Scholar 

  13. Hasani, R.M., Lechner, M., Amini, A., Rus, D., Grosu, R.: Liquid time-constant networks. In: AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  14. Hernández-Lorenzo, L., Hoffmann, M., Scheibling, E., List, M., Matías-Guiu, J.A., Ayala, J.L.: On the limits of graph neural networks for the early diagnosis of Alzheimer’s disease. Sci. Rep. 12(1), 17632 (2022)

    Article  Google Scholar 

  15. Kim, M., et al.: Interpretable temporal graph neural network for prognostic prediction of Alzheimer’s disease using longitudinal neuroimaging data. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1381–1384 (2021)

    Google Scholar 

  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2017)

    Google Scholar 

  17. Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999), 1616–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, W.J., et al.: Regional a\(\beta \)-tau interactions promote onset and acceleration of Alzheimer’s disease tau spreading. Neuron 110, 1932–1943 (2022)

    Article  Google Scholar 

  20. Ma, X., Wu, G., Kim, W.H.: Multi-resolution graph neural network for identifying disease-specific variations in brain connectivity. arXiv preprint arXiv:1912.01181 (2019)

  21. McAllister, B.B., Lacoursiere, S.G., Sutherland, R.J., Mohajerani, M.H.: Intracerebral seeding of amyloid-\(\beta \) and tau pathology in mice: factors underlying prion-like spreading and comparisons with \(\alpha \)-synuclein. Neurosci. Biobehav. Rev. 112, 1–27 (2020)

    Article  Google Scholar 

  22. Pasqualetti, F., Zampieri, S., Bullo, F.: Controllability metrics, limitations and algorithms for complex networks. IEEE Trans. Control Netw. Syst. 1(1), 40–52 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Petersen, R.C., et al.: Alzheimer’s disease neuroimaging initiative (ADNI). Neurology 74(3), 201–209 (2010)

    Article  Google Scholar 

  24. Shan, X., Cao, J., Huo, S., Chen, L., Sarrigiannis, P.G., Zhao, Y.: Spatial-temporal graph convolutional network for alzheimer classification based on brain functional connectivity imaging of electroencephalogram. Hum. Brain Mapp. 43(17), 5194–5209 (2022)

    Article  Google Scholar 

  25. Song, T.A., et al.: Graph convolutional neural networks for alzheimer’s disease classification. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 414–417 (2019)

    Google Scholar 

  26. Syaifullah, A.H., Shiino, A., Kitahara, H., Ito, R., Ishida, M., Tanigaki, K.: Machine learning for diagnosis of AD and prediction of MCI progression from brain MRI using brain anatomical analysis using diffeomorphic deformation. Front. Neurol. 11, 576029 (2021)

    Article  Google Scholar 

  27. Takeda, S.: Tau propagation as a diagnostic and therapeutic target for dementia: potentials and unanswered questions. Front. Neurosci. 13, 1274 (2019)

    Article  Google Scholar 

  28. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  29. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  30. Vogel, J.W., Young, A.L., et al.: Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 27(5), 871–881 (2021)

    Article  Google Scholar 

  31. Zhang, J., Yang, D., He, W., Wu, G., Chen, M.: A network-guided reaction-diffusion model of at[n] biomarkers in Alzheimer’s disease. In: 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 222–229 (2020)

    Google Scholar 

Download references

Acknowledgment

This work was supported by Foundation of Hope, NIH R01AG068399, NIH R03AG073927. Won Hwa Kim was partially supported by IITP-2019-0-01906 (AI Graduate Program at POSTECH) funded by the Korean government (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guorong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dan, T., Kim, M., Kim, W.H., Wu, G. (2023). Enhance Early Diagnosis Accuracy of Alzheimer’s Disease by Elucidating Interactions Between Amyloid Cascade and Tau Propagation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics