Skip to main content

DAST: Differentiable Architecture Search with Transformer for 3D Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Neural Architecture Search (NAS) has been widely used for medical image segmentation by improving both model performance and computational efficiency. Recently, the Visual Transformer (ViT) model has achieved significant success in computer vision tasks. Leveraging these two innovations, we propose a novel NAS algorithm, DAST, to optimize neural network models with transformers for 3D medical image segmentation. The proposed algorithm is able to search the global structure and local operations of the architecture with a GPU memory consumption constraint. The resulting architectures reveal an effective relationship between convolution and transformer layers in segmentation models. Moreover, we validate the proposed algorithm on large-scale medical image segmentation data sets, showing its superior performance over the baselines. The model achieves state-of-the-art performance in the public challenge of kidney CT segmentation (KiTS’19).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/Project-MONAI/tutorials/tree/master/automl/DiNTS.

  2. 2.

    https://kits19.grand-challenge.org/evaluation/challenge/leaderboard/.

References

  1. Antonelli, M., et al.: The medical segmentation decathlon. arXiv preprint arXiv:2106.05735 (2021)

  2. Bae, W., Lee, S., Lee, Y., Park, B., Chung, M., Jung, K.-H.: Resource Optimized Neural Architecture Search for 3D Medical Image Segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 228–236. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_26

    Chapter  Google Scholar 

  3. Cao, H., et al.: Swin-unet: unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  4. Chen, J., et al.: TransuNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  5. Ding, M., et al.: HR-NAS: searching efficient high-resolution neural architectures with lightweight transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2982–2992 (2021)

    Google Scholar 

  6. Dong, N., Xu, M., Liang, X., Jiang, Y., Dai, W., Xing, E.: Neural Architecture Search for Adversarial Medical Image Segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 828–836. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_92

    Chapter  Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  8. Elnakib, A., Gimel’farb, G., Suri, J.S., El-Baz, A.: Medical image segmentation: a brief survey. Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies pp. 1–39 (2011)

    Google Scholar 

  9. Guo, D., et al.: Organ at risk segmentation for head and neck cancer using stratified learning and neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4223–4232 (2020)

    Google Scholar 

  10. Hatamizadeh, A., et al.: UNETR: transformers for 3d medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 574–584 (2022)

    Google Scholar 

  11. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)

  12. He, Y., Yang, D., Roth, H., Zhao, C., Xu, D.: Dints: differentiable neural network topology search for 3d medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5841–5850 (2021)

    Google Scholar 

  13. Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the kits19 challenge. Med. Image Anal. 67, 101821 (2020)

    Google Scholar 

  14. Heller, N., et al.: The kits19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. arXiv preprint arXiv:1904.00445 (2019)

  15. Hou, X., Xie, C., Li, F., Nan, Y.: Cascaded semantic segmentation for kidney and tumor. Submissions to the (2019)

    Google Scholar 

  16. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  17. Kim, S., et al.: Scalable Neural Architecture Search for 3D Medical Image Segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 220–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_25

    Chapter  Google Scholar 

  18. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  19. Ma, J.: Solution to the kidney tumor segmentation challenge 2019 (2019)

    Google Scholar 

  20. Mu, G., Lin, Z., Han, M., Yao, G., Gao, Y.: Segmentation of kidney tumor by multi-resolution VB-Nets (2019)

    Google Scholar 

  21. Park, S., Kim, G., Kim, J., Kim, B., Ye, J.C.: Federated split task-agnostic vision transformer for COVID-19 CXR diagnosis. Adv. Neural Inf. Process. Syst. 34 (2021)

    Google Scholar 

  22. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3d medical image analysis. arXiv preprint arXiv:2111.14791 (2021)

  23. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical Transformer: Gated Axial-Attention for Medical Image Segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_4

    Chapter  Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  25. Xie, Y., Zhang, J., Shen, C., Xia, Y.: CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 171–180. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_16

    Chapter  Google Scholar 

  26. Yan, X., Jiang, W., Shi, Y., Zhuo, C.: MS-NAS: Multi-scale Neural Architecture Search for Medical Image Segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 388–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_38

    Chapter  Google Scholar 

  27. Yu, Q., et al.: C2FNAS: coarse-to-fine neural architecture search for 3d medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4126–4135 (2020)

    Google Scholar 

  28. Zhang, Y., et al.: Cascaded volumetric convolutional network for kidney tumor segmentation from CT volumes. arXiv preprint arXiv:1910.02235 (2019)

  29. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)

  30. Zhu, Z., Liu, C., Yang, D., Yuille, A., Xu, D.: V-NAS: neural architecture search for volumetric medical image segmentation. In: 2019 International conference on 3d vision (3DV). pp. 240–248. IEEE (2019)

    Google Scholar 

  31. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, D. et al. (2023). DAST: Differentiable Architecture Search with Transformer for 3D Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics