Skip to main content

CAS-Net: Cross-View Aligned Segmentation by Graph Representation of Knees

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Magnetic Resonance Imaging (MRI) has become an essential tool for clinical knee examinations. In clinical practice, knee scans are acquired from multiple views with stacked 2D slices, ensuring diagnosis accuracy while saving scanning time. However, obtaining fine 3D knee segmentation from multi-view 2D scans is challenging, which is yet necessary for morphological analysis. Moreover, radiologists need to annotate the knee segmentation in multiple 2D scans for medical studies, bringing additional labor. In this paper, we propose the Cross-view Aligned Segmentation Network (CAS-Net) to produce 3D knee segmentation from multi-view 2D MRI scans and annotations of sagittal views only. Specifically, a knee graph representation is firstly built in a 3D isotropic space after the super-resolution of multi-view 2D scans. Then, we utilize a graph-based network to segment individual multi-view patches along the knee surface, and piece together these patch segmentations into a complete knee segmentation with help of the knee graph. Experiments conducted on the Osteoarthritis Initiative (OAI) dataset demonstrate the validity of the CAS-Net to generate accurate 3D segmentation.

Z. Zhuang, X. Wang and S. Wang—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambellan, F., Tack, A., Ehlke, M., Zachow, S.: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the osteoarthritis initiative. Med. Image Anal. 52, 109–118 (2019)

    Article  Google Scholar 

  2. Calivà, F., Namiri, N.K., Dubreuil, M., Pedoia, V., Ozhinsky, E., Majumdar, S.: Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging. Nat. Rev. Rheumatol. 18, 1–10 (2021)

    Google Scholar 

  3. Carballido-Gamio, J., et al.: Inter-subject comparison of MRI knee cartilage thickness. Med. Image Anal. 12(2), 120–135 (2008)

    Article  Google Scholar 

  4. Dwivedi, V.P., Bresson, X.: A generalization of transformer networks to graphs. arXiv preprint arXiv:2012.09699 (2020)

  5. Eckstein, F., Wirth, W., Nevitt, M.C.: Recent advances in osteoarthritis imaging-the osteoarthritis initiative. Nat. Rev. Rheumatol. 8(10), 622–630 (2012)

    Article  Google Scholar 

  6. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  7. Kakigi, T., et al.: Diagnostic advantage of thin slice 2D MRI and multiplanar reconstruction of the knee joint using deep learning based denoising approach. Sci. Rep. 12(1), 1–14 (2022)

    Article  Google Scholar 

  8. Kijowski, R., Davis, K.W., Blankenbaker, D.G., Woods, M.A., Del Rio, A.M., De Smet, A.A.: Evaluation of the menisci of the knee joint using three-dimensional isotropic resolution fast spin-echo imaging: diagnostic performance in 250 patients with surgical correlation. Skeletal Radiol. 41, 169–178 (2012)

    Article  Google Scholar 

  9. Li, T., Xuan, K., Xue, Z., Chen, L., Zhang, L., Qian, D.: Cross-view label transfer in knee MR segmentation using iterative context learning. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 96–105. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_10

    Chapter  Google Scholar 

  10. Liu, D., et al.: Transfusion: multi-view divergent fusion for medical image segmentation with transformers. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 485–495. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_47

    Chapter  Google Scholar 

  11. Perslev, M., Dam, E.B., Pai, A., Igel, C.: One network to segment them all: a general, lightweight system for accurate 3D medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 30–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_4

    Chapter  Google Scholar 

  12. Perslev, M., Pai, A., Runhaar, J., Igel, C., Dam, E.B.: Cross-cohort automatic knee MRI segmentation with multi-planar U-nets. J. Magn. Reson. Imaging 55(6), 1650–1663 (2022)

    Article  Google Scholar 

  13. Recht, M.P., et al.: Using deep learning to accelerate knee MRI at 3 T: results of an interchangeability study. AJR Am. J. Roentgenol. 215(6), 1421 (2020)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Schmidt, A.M., et al.: Generalizability of deep learning segmentation algorithms for automated assessment of cartilage morphology and MRI relaxometry. J. Magn. Reson. Imaging 57(4), 1029–1039 (2022)

    Article  Google Scholar 

  16. Shakoor, D., et al.: Diagnosis of knee meniscal injuries by using three-dimensional MRI: a systematic review and meta-analysis of diagnostic performance. Radiology 290(2), 435–445 (2019)

    Article  Google Scholar 

  17. Vanwanseele, B., et al.: The relationship between knee adduction moment and cartilage and meniscus morphology in women with osteoarthritis. Osteoarthritis Cartilage 18(7), 894–901 (2010)

    Article  Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  19. Wang, X., Xuan, K., Wang, S., Xiong, H., Zhang, L., Wang, Q.: Arbitrary reduction of MRI slice spacing based on local-aware implicit representation. arXiv preprint arXiv:2205.11346 (2022)

  20. Wenger, A., et al.: Relationship of 3D meniscal morphology and position with knee pain in subjects with knee osteoarthritis: a pilot study. Eur. Radiol. 22, 211–220 (2012)

    Article  Google Scholar 

  21. Zhuang, Z., et al.: Knee cartilage defect assessment by graph representation and surface convolution. IEEE Trans. Med. Imaging 42(2), 368–379 (2022)

    Article  Google Scholar 

  22. Zhuang, Z., et al.: Local graph fusion of multi-view MR images for knee osteoarthritis diagnosis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 554–563. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_53

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 62001292), and partially supported by the National Natural Science Foundation of China (U22A20283), and the Interdisciplinary Program of Shanghai Jiao Tong University (No. YG2023LC07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lichi Zhang or Qian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuang, Z. et al. (2023). CAS-Net: Cross-View Aligned Segmentation by Graph Representation of Knees. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics