Skip to main content

RBGNet: Reliable Boundary-Guided Segmentation of Choroidal Neovascularization

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14223))

  • 4238 Accesses

Abstract

Choroidal neovascularization (CNV) is a leading cause of visual impairment in retinal diseases. Optical coherence tomography angiography (OCTA) enables non-invasive CNV visualization with micrometerscale resolution, aiding precise extraction and analysis. Nevertheless, the irregular shape patterns, variable scales, and blurred lesion boundaries of CNVs present challenges for their precise segmentation in OCTA images. In this study, we propose a Reliable Boundary-Guided choroidal neovascularization segmentation Network (RBGNet) to address these issues. Specifically, our RBGNet comprises a dual-stream encoder and a multi-task decoder. The encoder consists of a convolutional neural network (CNN) stream and a transformer stream. The transformer captures global context and establishes long-range dependencies, compensating for the limitations of the CNN. The decoder is designed with multiple tasks to address specific challenges. Reliable boundary guidance is achieved by evaluating the uncertainty of each pixel label, By assigning it as a weight to regions with highly unstable boundaries, the network’s ability to learn precise boundary locations can be improved, ultimately leading to more accurate segmentation results. The prediction results are also used to adaptively adjust the weighting factors between losses to guide the network’s learning process. Our experimental results demonstrate that RBGNet outperforms existing methods, achieving a Dice score of \(90.42\%\) for CNV region segmentation and \(90.25\%\) for CNV vessel segmentation. https://github.com/iMED-Lab/RBGnet-Pytorch.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman, D.S., et al.: Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol. 122(4), 564–572 (2004)

    Article  Google Scholar 

  2. Spaide, R.F., Klancnik, J.M., Cooney, M.J.: Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 133(1), 45–50 (2015)

    Article  Google Scholar 

  3. Jia, Y., et al.: Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121(7), 1435–1444 (2014)

    Article  Google Scholar 

  4. Falavarjani, K.G., Al-Sheikh, M., Akil, H., Sadda, S.R.: Image artefacts in swept-source optical coherence tomography angiography. Br. J. Ophthalmol. 101(5), 564–568 (2017)

    Article  Google Scholar 

  5. Liu, L., Gao, S.S., Bailey, S.T., Huang, D., Li, D., Jia, Y.: Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. Biomed. Opt. Express 6(9), 3564–3576 (2015)

    Article  Google Scholar 

  6. Xue, J., Camino, A., Bailey, S.T., Liu, X., Li, D., Jia, Y.: Automatic quantification of choroidal neovascularization lesion area on OCT angiography based on density cell-like p systems with active membranes. Biomed. Opt. Express 9(7), 3208–3219 (2018)

    Article  Google Scholar 

  7. Wang, J., et al.: Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning. Biomed. Opt. Express 11(2), 927–944 (2020)

    Article  Google Scholar 

  8. Meng, Q., et al.: MF-Net: multi-scale information fusion network for CNV segmentation in retinal OCT images. Front. Neurosci. 15, 743769 (2021)

    Article  Google Scholar 

  9. Su, J., Chen, X., Ma, Y., Zhu, W., Shi, F.: Segmentation of choroid neovascularization in OCT images based on convolutional neural network with differential amplification blocks. In: Medical Imaging 2020: Image Processing, vol. 11313, pp. 491–497. SPIE (2020)

    Google Scholar 

  10. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)

    Google Scholar 

  11. Bragman, F.J.S., et al.: Uncertainty in multitask learning: joint representations for probabilistic MR-only radiotherapy planning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_1

    Chapter  Google Scholar 

  12. Nair, T., Precup, D., Arnold, D.L., Arbel, T.: Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. Med. Image Anal. 59, 101557 (2020)

    Article  Google Scholar 

  13. Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  14. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O.R., Jagersand, M.: U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recogn. 106, 107404 (2020)

    Article  Google Scholar 

  17. Sedai, S., et al.: Uncertainty guided semi-supervised segmentation of retinal layers in OCT images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 282–290. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_32

    Chapter  Google Scholar 

  18. Gu, Z., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  19. Mou, L., et al.: CS-Net: channel and spatial attention network for curvilinear structure segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 721–730. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_80

    Chapter  Google Scholar 

  20. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

Download references

Acknowledgment

This work was supported in part by the National Science Foundation Program of China (62103398, 62272444), Zhejiang Provincial Natural Science Foundation of China (LZ23F010002, LR22F020008, LQ23F010002), in part by the Ningbo Natural Science Foundation (2022J143), and A*STAR AME Programmatic Fund (A20H4b0141) and Central Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yitian Zhao or Jiong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, T. et al. (2023). RBGNet: Reliable Boundary-Guided Segmentation of Choroidal Neovascularization. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics