Skip to main content

A Sheaf Theoretic Perspective for Robust Prostate Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14223))

  • 4246 Accesses

Abstract

Deep learning based methods have become the most popular approach for prostate segmentation in MRI. However, domain variations due to the complex acquisition process result in textural differences as well as imaging artefacts which significantly affects the robustness of deep learning models for prostate segmentation across multiple sites. We tackle this problem by using multiple MRI sequences to learn a set of low dimensional shape components whose combinatorially large learnt composition is capable of accounting for the entire distribution of segmentation outputs. We draw on the language of cellular sheaf theory to model compositionality driven by local and global topological correctness. In our experiments, our method significantly improves the domain generalisability of anatomical and tumour segmentation of the prostate. Code is available at https://github.com/AinkaranSanthi/A-Sheaf-Theoretic-Perspective-for-Robust-Segmentation.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13(1), 4128 (2022)

    Article  Google Scholar 

  2. Arad Hudson, D., Zitnick, L.: Compositional transformers for scene generation. Adv. Neural. Inf. Process. Syst. 34, 9506–9520 (2021)

    Google Scholar 

  3. Arif, M., et al.: Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI. Eur. Radiol. 30, 6582–6592 (2020)

    Article  Google Scholar 

  4. Arya, S., Curry, J., Mukherjee, S.: A sheaf-theoretic construction of shape space. arXiv preprint arXiv:2204.09020 (2022)

  5. Bloch, N., et al.: Cancer imaging archive Wiki. http://doi.org/10.7937/K9/TCIA.2015.zF0vlOPv (2015)

  6. Bloch, N., et al.: NCI-ISBI 2013 challenge: automated segmentation of prostate structures. Cancer Imaging Arch. 370, 6 (2015)

    Google Scholar 

  7. Bodnar, C., Di Giovanni, F., Chamberlain, B.P., Liò, P., Bronstein, M.M.: Neural sheaf diffusion: a topological perspective on heterophily and oversmoothing in GNNs. arXiv preprint arXiv:2202.04579 (2022)

  8. Bredon, G.E.: Sheaf Theory, vol. 170. Springer, Heidelberg (2012)

    Google Scholar 

  9. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2229–2238 (2019)

    Google Scholar 

  10. Carriere, M., Chazal, F., Glisse, M., Ike, Y., Kannan, H., Umeda, Y.: Optimizing persistent homology based functions. In: International Conference on Machine Learning, pp. 1294–1303. PMLR (2021)

    Google Scholar 

  11. Chen, C., et al.: Realistic adversarial data augmentation for MR image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 667–677. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_65

    Chapter  Google Scholar 

  12. Chen, Y.: Towards to robust and generalized medical image segmentation framework. arXiv preprint arXiv:2108.03823 (2021)

  13. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26, 1045–1057 (2013)

    Article  Google Scholar 

  14. Clough, J.R., Byrne, N., Oksuz, I., Zimmer, V.A., Schnabel, J.A., King, A.P.: A topological loss function for deep-learning based image segmentation using persistent homology. arXiv preprint arXiv:1910.01877 (2019)

  15. De Vente, C., Vos, P., Hosseinzadeh, M., Pluim, J., Veta, M.: Deep learning regression for prostate cancer detection and grading in bi-parametric MRI. IEEE Trans. Biomed. Eng. 68(2), 374–383 (2020)

    Article  Google Scholar 

  16. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arxiv 2017. arXiv preprint arXiv:1708.04552 (2017)

  17. Edelsbrunner, H., Harer, J., et al.: Persistent homology-a survey. Contemp. Math. 453(26), 257–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gunashekar, D.D., et al.: Explainable AI for CNN-based prostate tumor segmentation in multi-parametric MRI correlated to whole mount histopathology. Radiat. Oncol. 17(1), 1–10 (2022)

    Article  Google Scholar 

  19. Hu, C.S.: A brief note for sheaf structures on posets. arXiv preprint arXiv:2010.09651 (2020)

  20. Hu, C.S., Chung, Y.M.: A sheaf and topology approach to detecting local merging relations in digital images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4396–4405 (2021)

    Google Scholar 

  21. Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  22. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  23. Kortylewski, A., He, J., Liu, Q., Yuille, A.L.: Compositional convolutional neural networks: a deep architecture with innate robustness to partial occlusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8940–8949 (2020)

    Google Scholar 

  24. Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Huisman, H.: Cancer imaging archive Wiki. URL https://doi.org/10.7937/K9TCIA (2017)

  25. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Google Scholar 

  26. Liu, X., Thermos, S., Sanchez, P., O’Neil, A.Q., Tsaftaris, S.A.: vMFNet: compositionality meets domain-generalised segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part VII, pp. 704–714. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_67

  27. Moor, M., Horn, M., Rieck, B., Borgwardt, K.: Topological autoencoders. In: International Conference on Machine Learning, pp. 7045–7054. PMLR (2020)

    Google Scholar 

  28. Santhirasekaram, A., Kori, A., Winkler, M., Rockall, A., Glocker, B.: Vector quantisation for robust segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 663–672. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_63

  29. Skraba, P., Turner, K.: Wasserstein stability for persistence diagrams. arXiv preprint arXiv:2006.16824 (2020)

  30. Tramer, F., Boneh, D.: Adversarial training and robustness for multiple perturbations. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  31. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  32. Wagner, H., Chen, C., Vuçini, E.: Efficient computation of persistent homology for cubical data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization II: Theory, Algorithms, and Applications, pp. 91–106. Springer, Cham (2011). https://doi.org/10.1007/978-3-642-23175-9_7

  33. Xu, Z., Liu, D., Yang, J., Raffel, C., Niethammer, M.: Robust and generalizable visual representation learning via random convolutions. arXiv preprint arXiv:2007.13003 (2020)

  34. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  35. Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39(7), 2531–2540 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by Cancer Research UK (CRUK) (C309/A28804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainkaran Santhirasekaram .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 625 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santhirasekaram, A., Pinto, K., Winkler, M., Rockall, A., Glocker, B. (2023). A Sheaf Theoretic Perspective for Robust Prostate Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics