Skip to main content

EoFormer: Edge-Oriented Transformer for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14223))

  • 7698 Accesses

Abstract

Accurate segmentation of brain tumors in MRI images requires precise detection of the edges. However, this crucial information has been overlooked by existing methods. In this paper, we introduce the Edge-oriented Transformer (EoFormer) which specifically captures and enhances edge information for brain tumor segmentation. Our approach incorporates a CNN-Transformer encoder to comprehensively improve the feature representation capability. The CNN structure captures low-level local features in the image, while the Transformer structure establishes long-range dependencies between features to generate high-level global features. Additionally, the decoder of our approach utilizes two edge sharpening modules, the Edge-oriented Sobel and Laplacian modules, which enhance the edge information. We also introduce efficient attention and re-parameterization techniques that make EoFormer computationally efficient. Experimental results on the BraTS 2020 dataset and a private medulloblastoma dataset demonstrate the superiority of our approach compared with existing state-of-the-art methods. Moreover, our method achieves this with limtied model parameters and lower FLOPs, making it a promising approach for future research. The code is available at https://github.com/sd0809/EoFormer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, S., Ding, C., Tao, D.: Boundary-assisted region proposal networks for nucleus segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 279–288. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_27

    Chapter  Google Scholar 

  2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  3. Ding, H., Jiang, X., Liu, A.Q., Thalmann, N.M., Wang, G.: Boundary-aware feature propagation for scene segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6819–6829 (2019)

    Google Scholar 

  4. Ding, X., Guo, Y., Ding, G., Han, J.: ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1911–1920 (2019)

    Google Scholar 

  5. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-style convnets great again. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13733–13742 (2021)

    Google Scholar 

  6. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, 27 September 2021, Revised Selected Papers, Part I, pp. 272–284. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08999-2_22

  7. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  8. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  9. Karimi, D., Salcudean, S.E.: Reducing the hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans. Med. Imaging 39(2), 499–513 (2019)

    Article  Google Scholar 

  10. Larrazabal, A.J., Martínez, C., Dolz, J., Ferrante, E.: Orthogonal ensemble networks for biomedical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 594–603. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_56

    Chapter  Google Scholar 

  11. Li, X., et al.: Improving semantic segmentation via decoupled body and edge supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 435–452. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_26

    Chapter  Google Scholar 

  12. Lin, L., et al.: BSDA-Net: a boundary shape and distance aware joint learning framework for segmenting and classifying OCTA images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 65–75. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_7

    Chapter  Google Scholar 

  13. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  14. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  15. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018, Part II. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  16. Sharma, N., Aggarwal, L.M., et al.: Automated medical image segmentation techniques. J. Med. Phys. 35(1), 3 (2010)

    Article  Google Scholar 

  17. Shen, Z., Zhang, M., Zhao, H., Yi, S., Li, H.: Efficient attention: attention with linear complexities. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3531–3539 (2021)

    Google Scholar 

  18. Tang, C., Chen, H., Li, X., Li, J., Zhang, Z., Hu, X.: Look closer to segment better: boundary patch refinement for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13926–13935 (2021)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  20. Wang, J., Wei, L., Wang, L., Zhou, Q., Zhu, L., Qin, J.: Boundary-aware transformers for skin lesion segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 206–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_20

    Chapter  Google Scholar 

  21. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11

  22. Xie, Y., Liao, H., Zhang, D., Chen, F.: Uncertainty-aware cascade network for ultrasound image segmentation with ambiguous boundary. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part IV, pp. 268–278. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_26

  23. Xing, Z., Yu, L., Wan, L., Han, T., Zhu, L.: NestedFormer: nested modality-aware transformer for brain tumor segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part V, pp. 140–150. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_14

  24. Yu, W., et al.: MetaFormer is actually what you need for vision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10819–10829 (2022)

    Google Scholar 

  25. Zou, N., Xiang, Z., Chen, Y., Chen, S., Qiao, C.: Boundary-aware CNN for semantic segmentation. IEEE Access 7, 114520–114528 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueyi Zhang or Xiaoyan Sun .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 367 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

She, D., Zhang, Y., Zhang, Z., Li, H., Yan, Z., Sun, X. (2023). EoFormer: Edge-Oriented Transformer for Brain Tumor Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics