Skip to main content

SwinUNETR-V2: Stronger Swin Transformers with Stagewise Convolutions for 3D Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14223))

  • 5540 Accesses

Abstract

Transformers for medical image segmentation have attracted broad interest. Unlike convolutional networks (CNNs), transformers use self-attentions that do not have a strong inductive bias. This gives transformers the ability to learn long-range dependencies and stronger modeling capacities. Although they, e.g. SwinUNETR, achieve state-of-the-art (SOTA) results on some benchmarks, the lack of inductive bias makes transformers harder to train, requires much more training data, and are sensitive to training recipes. In many clinical scenarios and challenges, transformers can still have inferior performances than SOTA CNNs like nnUNet. A transformer backbone and corresponding training recipe, which can achieve top performances under different medical image segmentation scenarios, still needs to be developed. In this paper, we enhance the SwinUNETR with convolutions, which results in a surprisingly stronger backbone, the SwinUNETR-V2, for 3D medical image segmentation. It achieves top performance on a variety of benchmarks of different sizes and modalities, including the Whole abdominal ORgan Dataset (WORD), MICCAI FLARE2021 dataset, MSD pancreas dataset, MSD prostate dataset, and MSD lung cancer dataset, all using the same training recipe (https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV, our training recipe is the same as that by SwinUNETR) with minimum changes across tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/MASILab/3DUX-Net.

  2. 2.

    https://github.com/MIC-DKFZ/nnUNet.

References

  1. Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13(1), 1–13 (2022)

    Article  Google Scholar 

  2. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  3. Chen, J., et al.: TransUNet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  4. Chen, Y., et al.: Mobile-Former: Bridging mobileNet and transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5270–5279 (2022)

    Google Scholar 

  5. Dai, Z., Liu, H., Le, Q.V., Tan, M.: CoAtNet: marrying convolution and attention for all data sizes. Adv. Neural Inf. Process. Syst. 34, 3965–3977 (2021)

    Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. d’Ascoli, S., Touvron, H., Leavitt, M.L., Morcos, A.S., Biroli, G., Sagun, L.: ConViT: improving vision transformers with soft convolutional inductive biases. In: International Conference on Machine Learning, pp. 2286–2296. PMLR (2021)

    Google Scholar 

  8. Guo, J., et al.: CMT: convolutional neural networks meet vision transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12175–12185 (2022)

    Google Scholar 

  9. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  10. He, Y., Yang, D., Roth, H., Zhao, C., Xu, D.: DiNTS: differentiable neural network topology search for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5841–5850 (2021)

    Google Scholar 

  11. Huang, Z. et al.: Revisiting nnU-Net for iterative pseudo labeling and efficient sliding window inference. In: Ma, J., Wang, B. (eds.) Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation. FLARE 2022. Lecture Notes in Computer Science. vol. 13816. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23911-3_16

  12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Ji, Y., et al.: AMOS: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation. arXiv preprint arXiv:2206.08023 (2022)

  14. Lee, H.H., Bao, S., Huo, Y., Landman, B.A.: 3D UX-Net: A large kernel volumetric convnet modernizing hierarchical transformer for medical image segmentation. arXiv (2022)

    Google Scholar 

  15. Li, X., et al.: The state-of-the-art 3d anisotropic intracranial hemorrhage segmentation on non-contrast head CT: the instance challenge. arXiv preprint arXiv:2301.03281 (2023)

  16. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  17. Luo, X.: Word: a large scale dataset, benchmark and clinical applicable study for abdominal organ segmentation from CT image. Med. Image Anal. 82, 102642 (2022)

    Article  Google Scholar 

  18. Ma, J., et al.: Fast and low-GPU-memory abdomen CT organ segmentation: the flare challenge. Med. Image Anal. 82, 102616 (2022)

    Article  Google Scholar 

  19. Myronenko, A., Siddiquee, M.M.R., Yang, D., He, Y., Xu, D.: Automated head and neck tumor segmentation from 3D PET/CT. arXiv preprint arXiv:2209.10809 (2022)

  20. Peng, Z., et al.: Conformer: local features coupling global representations for visual recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 367–376 (2021)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Siddiquee, M.M.R., Yang, D., He, Y., Xu, D., Myronenko, A.: Automated segmentation of intracranial hemorrhages from 3D CT. arXiv preprint arXiv:2209.10648 (2022)

  23. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20730–20740 (2022)

    Google Scholar 

  24. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_4

    Chapter  Google Scholar 

  25. Vaswani, A., Ramachandran, P., Srinivas, A., Parmar, N., Hechtman, B., Shlens, J.: Scaling local self-attention for parameter efficient visual backbones. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12894–12904 (2021)

    Google Scholar 

  26. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 568–578 (2021)

    Google Scholar 

  27. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11

    Chapter  Google Scholar 

  28. Wu, H., et al.: CvT: introducing convolutions to vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22–31 (2021)

    Google Scholar 

  29. Xia, Z., Pan, X., Song, S., Li, L.E., Huang, G.: Vision transformer with deformable attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4794–4803 (2022)

    Google Scholar 

  30. Xie, Y., Zhang, J., Shen, C., Xia, Y.: CoTr: efficiently bridging CNN and transformer for 3D medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 171–180. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_16

    Chapter  Google Scholar 

  31. Yang, C., et al.: MOAT: alternating mobile convolution and attention brings strong vision models. arXiv preprint arXiv:2210.01820 (2022)

  32. Yang, D., et al.: T-AutoML: automated machine learning for lesion segmentation using transformers in 3d medical imaging. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3962–3974 (2021)

    Google Scholar 

  33. Zhang, Y., Liu, H., Hu, Q.: TransFuse: fusing transformers and CNNs for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_2

    Chapter  Google Scholar 

  34. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 633–641 (2017)

    Google Scholar 

  35. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: Interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufan He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Y., Nath, V., Yang, D., Tang, Y., Myronenko, A., Xu, D. (2023). SwinUNETR-V2: Stronger Swin Transformers with Stagewise Convolutions for 3D Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics