Skip to main content

Medical Boundary Diffusion Model for Skin Lesion Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14223))

  • 4557 Accesses

Abstract

Skin lesion segmentation in dermoscopy images has seen recent success due to advancements in multi-scale boundary attention and feature-enhanced modules. However, existing methods that rely on end-to-end learning paradigms, which directly input images and output segmentation maps, often struggle with extremely hard boundaries, such as those found in lesions of particularly small or large sizes. This limitation arises because the receptive field and local context extraction capabilities of any finite model are inevitably limited, and the acquisition of additional expert-labeled data required for larger models is costly. Motivated by the impressive advances of diffusion models that regard image synthesis as a parameterized chain process, we introduce a novel approach that formulates skin lesion segmentation as a boundary evolution process to thoroughly investigate the boundary knowledge. Specifically, we propose the Medical Boundary Diffusion Model (MB-Diff), which starts with a randomly sampled Gaussian noise, and the boundary evolves within finite times to obtain a clear segmentation map. First, we propose an efficient multi-scale image guidance module to constrain the boundary evolution, which makes the evolution direction suit our desired lesions. Second, we propose an evolution uncertainty-based fusion strategy to refine the evolution results and yield more precise lesion boundaries. We evaluate the performance of our model on two popular skin lesion segmentation datasets and compare our model to the latest CNN and transformer models. Our results demonstrate that our model outperforms existing methods in all metrics and achieves superior performance on extremely challenging skin lesions. The proposed approach has the potential to significantly enhance the accuracy and reliability of skin lesion segmentation, providing critical information for diagnosis and treatment. All resources will be publicly available at https://github.com/jcwang123/MBDiff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azad, R., Asadi-Aghbolaghi, M., Fathy, M., Escalera, S.: Attention Deeplabv3+: multi-level context attention mechanism for skin lesion segmentation. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12535, pp. 251–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66415-2_16

    Chapter  Google Scholar 

  2. Cao, W., et al.: ICL-Net: global and local inter-pixel correlations learning network for skin lesion segmentation. IEEE J. Biomed. Health Inf. 27(1), 145–156 (2022)

    Google Scholar 

  3. Chen, J., et al.: TransUNet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  4. Czolbe, S., Arnavaz, K., Krause, O., Feragen, A.: Is segmentation uncertainty useful? In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 715–726. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_55

    Chapter  Google Scholar 

  5. DeVries, T., Taylor, G.W.: Leveraging uncertainty estimates for predicting segmentation quality. arXiv preprint arXiv:1807.00502 (2018)

  6. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural Inf. Process. Syst. 34, 8780–8794 (2021)

    Google Scholar 

  7. Gu, R., et al.: Ca-net: Comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Trans. Med. Imaging 40(2), 699–711 (2020)

    Article  Google Scholar 

  8. Gutman, D., et al.: Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397 (2016)

  9. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  10. Li, H., et al.: Dense deconvolutional network for skin lesion segmentation. IEEE J. Biomed. Health Inf. 23(2), 527–537 (2018)

    Article  MathSciNet  Google Scholar 

  11. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  12. Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39(12), 3868–3878 (2020)

    Article  Google Scholar 

  13. Mendonça, T., Ferreira, P.M., Marques, J.S., Marcal, A.R., Rozeira, J.: PH 2-A dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5437–5440. IEEE (2013)

    Google Scholar 

  14. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, pp. 8162–8171. PMLR (2021)

    Google Scholar 

  15. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2022. CA: Cancer J. Clin. 72(1), 7–33 (2022)

    Google Scholar 

  18. Wang, J., et al.: XBound-former: toward cross-scale boundary modeling in transformers. IEEE Trans. Med. Imaging 42(6), 1735–1745 (2023)

    Google Scholar 

  19. Wang, J., Wei, L., Wang, L., Zhou, Q., Zhu, L., Qin, J.: Boundary-aware transformers for skin lesion segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 206–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_20

    Chapter  Google Scholar 

  20. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 568–578 (2021)

    Google Scholar 

  21. Wu, H., Pan, J., Li, Z., Wen, Z., Qin, J.: Automated skin lesion segmentation via an adaptive dual attention module. IEEE Trans. Med. Imaging 40(1), 357–370 (2020)

    Article  Google Scholar 

  22. Wu, J., Fang, H., Zhang, Y., Yang, Y., Xu, Y.: MedSegDiff: Medical image segmentation with diffusion probabilistic model. arXiv preprint arXiv:2211.00611 (2022)

  23. Zhang, Y., Liu, H., Hu, Q.: TransFuse: fusing transformers and CNNs for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_2

    Chapter  Google Scholar 

  24. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested u-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key Research and Development Program of China (2019YFE0113900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qichao Zhou or Liansheng Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 653 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Yang, J., Zhou, Q., Wang, L. (2023). Medical Boundary Diffusion Model for Skin Lesion Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics