Skip to main content

Instructive Feature Enhancement for Dichotomous Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Deep neural networks have been widely applied in dichotomous medical image segmentation (DMIS) of many anatomical structures in several modalities, achieving promising performance. However, existing networks tend to struggle with task-specific, heavy and complex designs to improve accuracy. They made little instructions to which feature channels would be more beneficial for segmentation, and that may be why the performance and universality of these segmentation models are hindered. In this study, we propose an instructive feature enhancement approach, namely IFE, to adaptively select feature channels with rich texture cues and strong discriminability to enhance raw features based on local curvature or global information entropy criteria. Being plug-and-play and applicable for diverse DMIS tasks, IFE encourages the model to focus on texture-rich features which are especially important for the ambiguous and challenging boundary identification, simultaneously achieving simplicity, universality, and certain interpretability. To evaluate the proposed IFE, we constructed the first large-scale DMIS dataset Cosmos55k, which contains 55,023 images from 7 modalities and 26 anatomical structures. Extensive experiments show that IFE can improve the performance of classic segmentation networks across different anatomies and modalities with only slight modifications. Code is available at https://github.com/yezi-66/IFE.

L. Liu and H. Zhou—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel-Khalek, S., Ishak, A.B., Omer, O.A., Obada, A.S.: A two-dimensional image segmentation method based on genetic algorithm and entropy. Optik 131, 414–422 (2017)

    Article  Google Scholar 

  2. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE CVPR (2009)

    Google Scholar 

  3. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  4. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE TMI 37(11), 2514–2525 (2018)

    Google Scholar 

  5. Bilic, P., et al.: The liver tumor segmentation benchmark (LiTS). MIA 84, 102680 (2023)

    Google Scholar 

  6. Cao, G., Xie, X., Yang, W., Liao, Q., Shi, G., Wu, J.: Feature-fused SSD: fast detection for small objects. In: SPIE ICGIP, vol. 10615 (2018)

    Google Scholar 

  7. Chang, H.H., Zhuang, A.H., Valentino, D.J., Chu, W.C.: Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 47(1), 122–135 (2009)

    Article  Google Scholar 

  8. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE TPAMI 40(4), 834–848 (2017)

    Article  Google Scholar 

  9. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  10. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: IEEE CVPR (2017)

    Google Scholar 

  11. Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: ISBI (2018)

    Google Scholar 

  12. Crum, W.R., Camara, O., Hill, D.L.: Generalized overlap measures for evaluation and validation in medical image analysis. IEEE TMI 25(11), 1451–1461 (2006)

    Google Scholar 

  13. Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: IEEE ICPR (1994)

    Google Scholar 

  14. Fan, D.P., Ji, G.P., Cheng, M.M., Shao, L.: Concealed object detection. IEEE TPAMI 44(10), 6024–6042 (2021)

    Article  Google Scholar 

  15. Gong, Y., Sbalzarini, I.F.: Curvature filters efficiently reduce certain variational energies. IEEE TIP 26(4), 1786–1798 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: IEEE CVPR (2021)

    Google Scholar 

  17. Howard, A., et al.: Searching for MobileNetV3. In: IEEE ICCV (2019)

    Google Scholar 

  18. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Meth. 18(2), 203–211 (2021)

    Article  Google Scholar 

  19. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  20. Ji, W., et al.: Learning calibrated medical image segmentation via multi-rater agreement modeling. In: IEEE CVPR (2021)

    Google Scholar 

  21. Ji, Y., et al.: AMOS: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation. arXiv preprint arXiv:2206.08023 (2022)

  22. Kavur, A.E., et al.: Chaos challenge-combined (CT-MR) healthy abdominal organ segmentation. MIA 69, 101950 (2021)

    Google Scholar 

  23. Litjens, G., et al.: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. MIA 18(2), 359–373 (2014)

    Google Scholar 

  24. Luo, X., et al.: WORD: a large scale dataset, benchmark and clinical applicable study for abdominal organ segmentation from CT image. MIA 82, 102642 (2022)

    Google Scholar 

  25. Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: IEEE CVPR (2012)

    Google Scholar 

  26. Qin, X., Dai, H., Hu, X., Fan, D.P., Shao, L., Van Gool, L.: Highly accurate dichotomous image segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13678, pp. 38–56. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19797-0_3

  27. Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., Dosovitskiy, A.: Do vision transformers see like convolutional neural networks? Adv. Neural. Inf. Process. Syst. 34, 12116–12128 (2021)

    Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Sekuboyina, A., et al.: Verse: a vertebrae labelling and segmentation benchmark for multi-detector CT images. MIA 73, 102166 (2021)

    Google Scholar 

  30. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  31. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: AAAI (2017)

    Google Scholar 

  32. Zhao, Z., Chen, H., Wang, L.: A coarse-to-fine framework for the 2021 kidney and kidney tumor segmentation challenge. In: Heller, N., Isensee, F., Trofimova, D., Tejpaul, R., Papanikolopoulos, N., Weight, C. (eds.) KiTS 2021. LNCS, vol. 13168, pp. 53–58. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98385-7_8

    Chapter  Google Scholar 

  33. Zhong, Z., et al.: Squeeze-and-attention networks for semantic segmentation. In: IEEE CVPR (2020)

    Google Scholar 

  34. Zhou, D., et al.: Iou loss for 2D/3D object detection. In: IEEE 3DV (2019)

    Google Scholar 

  35. Zhou, Y., et al.: Prior-aware neural network for partially-supervised multi-organ segmentation. In: IEEE ICCV (2019)

    Google Scholar 

  36. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE TMI 39(6), 1856–1867 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors of this paper sincerely appreciate all the challenge organizers and owners for providing the public MIS datasets including AbdomenCT-1K, ACDC, AMOS 2022, BraTS20, CHAOS, CRAG, crossMoDA, EndoTect 2020, ETIS-Larib Polyp DB, iChallenge-AMD, iChallenge-PALM, IDRiD 2018, ISIC 2018, I2CVB, KiPA22, KiTS19& KiTS21, Kvasir-SEG, LUNA16, Multi-Atlas Labeling Beyond the Cranial Vault (Abdomen), Montgomery County CXR Set, M&Ms, MSD, NCI-ISBI 2013, PROMISE12, QUBIQ 2021, SIIM-ACR, SLIVER07, VerSe19 & VerSe20, Warwick-QU, and WORD.

This work was supported by the grant from National Natural Science Foundation of China (Nos. 62171290, 62101343), Shenzhen-Hong Kong Joint Research Program (No. SGDX20201103095613036), and Shenzhen Science and Technology Innovations Committee (No. 20200812143441001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deng-Ping Fan or Xin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L. et al. (2023). Instructive Feature Enhancement for Dichotomous Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics