Skip to main content

A2FSeg: Adaptive Multi-modal Fusion Network for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14223))

  • 4879 Accesses

Abstract

Magnetic Resonance Imaging (MRI) plays an important role in multi-modal brain tumor segmentation. However, missing modality is very common in clinical diagnosis, which will lead to severe segmentation performance degradation. In this paper, we propose a simple adaptive multi-modal fusion network for brain tumor segmentation, which has two stages of feature fusion, including a simple average fusion and an adaptive fusion based on an attention mechanism. Both fusion techniques are capable to handle the missing modality situation and contribute to the improvement of segmentation results, especially the adaptive one. We evaluate our method on the BraTS2020 dataset, achieving the state-of-the-art performance for the incomplete multi-modal brain tumor segmentation, compared to four recent methods. Our A2FSeg (Average and Adaptive Fusion Segmentation network) is simple yet effective and has the capability of handling any number of image modalities for incomplete multi-modal segmentation. Our source code is online and available at https://github.com/Zirui0623/A2FSeg.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C., Dou, Q., Jin, Y., Chen, H., Qin, J., Heng, P.-A.: Robust multimodal brain tumor segmentation via feature disentanglement and gated fusion. In: Shen, D., et al. (eds.) MICCAI 2019, Part III. LNCS, vol. 11766, pp. 447–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_50

    Chapter  Google Scholar 

  2. Ding, Y., Yu, X., Yang, Y.: RFNET: region-aware fusion network for incomplete multi-modal brain tumor segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3975–3984 (2021)

    Google Scholar 

  3. Dorent, R., Joutard, S., Modat, M., Ourselin, S., Vercauteren, T.: Hetero-modal variational encoder-decoder for joint modality completion and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019, Part II. LNCS, vol. 11765, pp. 74–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_9

    Chapter  Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale (2021)

    Google Scholar 

  5. Havaei, M., Guizard, N., Chapados, N., Bengio, Y.: HeMIS: hetero-modal image segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 469–477. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_54

    Chapter  Google Scholar 

  6. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16000–16009 (2022)

    Google Scholar 

  7. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  10. Li, R., et al.: Deep learning based imaging data completion for improved brain disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part III. LNCS, vol. 8675, pp. 305–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_39

    Chapter  Google Scholar 

  11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  12. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  13. Paszke, A., et al.:Automatic differentiation in pytorch (2017)

    Google Scholar 

  14. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. In: Proceedings of Machine Learning Research, 18–24 July 2021, vol. 139, pp. 8748–8763. PMLR (2021), https://proceedings.mlr.press/v139/radford21a.html

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. van Tulder, G., de Bruijne, M.: Why does synthesized data improve multi-sequence classification? In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part I. LNCS, vol. 9349, pp. 531–538. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_65

    Chapter  Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  18. Wang, Y., et al.: ACN: adversarial co-training network for brain tumor segmentation with missing modalities. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part VII. LNCS, vol. 12907, pp. 410–420. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_39

    Chapter  Google Scholar 

  19. Zhang, Y., et al.: mmFormer: multimodal medical transformer for incomplete multimodal learning of brain tumor segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part V. LNCS, vol. 13435, pp. 107–117. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_11

    Chapter  Google Scholar 

  20. Zhang, Y., et al.: Modality-aware mutual learning for multi-modal medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part I. LNCS, vol. 12901, pp. 589–599. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_56

    Chapter  Google Scholar 

  21. Zhao, Z., Yang, H., Sun, J.: Modality-adaptive feature interaction for brain tumor segmentation with missing modalities. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part V. LNCS, vol. 13435, pp. 183–192. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_18

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC 62203303 and Shanghai Municipal Science and Technology Major Project 2021SHZDZX0102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Hong, Y. (2023). A2FSeg: Adaptive Multi-modal Fusion Network for Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics