Skip to main content

DOMINO++: Domain-Aware Loss Regularization for Deep Learning Generalizability

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Out-of-distribution (OOD) generalization poses a serious challenge for modern deep learning (DL). OOD data consists of test data that is significantly different from the model’s training data. DL models that perform well on in-domain test data could struggle on OOD data. Overcoming this discrepancy is essential to the reliable deployment of DL. Proper model calibration decreases the number of spurious connections that are made between model features and class outputs. Hence, calibrated DL can improve OOD generalization by only learning features that are truly indicative of the respective classes. Previous work proposed domain-aware model calibration (DOMINO) to improve DL calibration, but it lacks designs for model generalizability to OOD data. In this work, we propose DOMINO++, a dual-guidance and dynamic domain-aware loss regularization focused on OOD generalizability. DOMINO++ integrates expert-guided and data-guided knowledge in its regularization. Unlike DOMINO which imposed a fixed scaling and regularization rate, DOMINO++ designs a dynamic scaling factor and an adaptive regularization rate. Comprehensive evaluations compare DOMINO++ with DOMINO and the baseline model for head tissue segmentation from magnetic resonance images (MRIs) on OOD data. The OOD data consists of synthetic noisy and rotated datasets, as well as real data using a different MRI scanner from a separate site. DOMINO++’s superior performance demonstrates its potential to improve the trustworthy deployment of DL on real clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization (2019). https://doi.org/10.48550/ARXIV.1907.02893, https://arxiv.org/abs/1907.02893

  2. Ashburner, J.: SPM: a history. Neuroimage 62(2), 791–800 (2012)

    Article  Google Scholar 

  3. Bertels, J., et al.: Optimizing the dice score and Jaccard index for medical image segmentation: theory and practice. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 92–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_11

    Chapter  Google Scholar 

  4. Consortium, M.: MONAI: Medical open network for AI, March 2020. https://doi.org/10.5281/zenodo.6114127, If you use this software, please cite it using these metadata

  5. Dinsdale, N.K., Bluemke, E., Sundaresan, V., Jenkinson, M., Smith, S.M., Namburete, A.I.: Challenges for machine learning in clinical translation of big data imaging studies. Neuron 110, 3866–3881 (2022)

    Article  Google Scholar 

  6. Dosovitskiy, A., Djolonga, J.: You only train once: loss-conditional training of deep networks. In: International Conference on Learning Representations (2020)

    Google Scholar 

  7. Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of 12th International Conference on Pattern Recognition, vol. 1, pp. 566–568. IEEE (1994)

    Google Scholar 

  8. Golatkar, A.S., Achille, A., Soatto, S.: Time matters in regularizing deep networks: weight decay and data augmentation affect early learning dynamics, matter little near convergence. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  9. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)

    Article  Google Scholar 

  10. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  11. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)

    Article  Google Scholar 

  12. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7. IEEE (2020)

    Google Scholar 

  13. Kukačka, J., Golkov, V., Cremers, D.: Regularization for deep learning: a taxonomy. arXiv preprint arXiv:1710.10686 (2017)

  14. Lee, J.H., Lee, C., Kim, C.S.: Learning multiple pixelwise tasks based on loss scale balancing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5107–5116 (2021)

    Google Scholar 

  15. Runge, V.M., Osborne, M.A., Wood, M.L., Wolpert, S.M., Kwan, E., Kaufman, D.M.: The efficacy of tilted axial MRI of the CNS. Magn. Reson. Imaging 5(6), 421–430 (1987)

    Article  Google Scholar 

  16. Saturnino, G.B., Puonti, O., Nielsen, J.D., Antonenko, D., Madsen, K.H., Thielscher, A.: SimNIBS 2.1: a comprehensive pipeline for individualized electric field modelling for transcranial brain stimulation. In: Makarov, S., Horner, M., Noetscher, G. (eds.) Brain and Human Body Modeling, pp. 3–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21293-3_1

    Chapter  Google Scholar 

  17. Sobol, W.T.: Recent advances in MRI technology: implications for image quality and patient safety. Saudi J. Ophthalmol. 26(4), 393–399 (2012)

    Article  Google Scholar 

  18. Stolte, S.E., et al.: DOMINO: domain-aware model calibration in medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part V, pp. 454–463. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_44

  19. Tom, G., Hickman, R.J., Zinzuwadia, A., Mohajeri, A., Sanchez-Lengeling, B., Aspuru-Guzik, A.: Calibration and generalizability of probabilistic models on low-data chemical datasets with DIONYSUS. arXiv preprint arXiv:2212.01574 (2022)

  20. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR 2011, pp. 1521–1528 (2011). https://doi.org/10.1109/CVPR.2011.5995347

  21. Wald, Y., Feder, A., Greenfeld, D., Shalit, U.: On calibration and out-of-domain generalization. Adv. Neural. Inf. Process. Syst. 34, 2215–2227 (2021)

    Google Scholar 

  22. Wolf, T., et al.: HuggingFace’s transformers: state-of-the-art natural language processing (2020)

    Google Scholar 

  23. Yang, J., Soltan, A.A., Clifton, D.A.: Machine learning generalizability across healthcare settings: insights from multi-site COVID-19 screening. npj Digit. Med. 5(1), 69 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health/National Institute on Aging, USA (NIA RF1AG071469, NIA R01AG054077), the National Science Foundation, USA (1908299), the Air Force Research Laboratory Munitions Directorate, USA (FA8651-08-D-0108 TO48), and NSF-AFRL INTERN Supplement to NSF IIS-1908299, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruogu Fang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 443 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stolte, S.E. et al. (2023). DOMINO++: Domain-Aware Loss Regularization for Deep Learning Generalizability. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics