Abstract
Radiotherapy (RT) is a standard treatment modality for head and neck (HaN) cancer that requires accurate segmentation of target volumes and nearby healthy organs-at-risk (OARs) to optimize radiation dose distribution. However, computed tomography (CT) imaging has low image contrast for soft tissues, making accurate segmentation of soft tissue OARs challenging. Therefore, magnetic resonance (MR) imaging has been recommended to enhance the segmentation of soft tissue OARs in the HaN region. Based on our two empirical observations that deformable registration of CT and MR images of the same patient is inherently imperfect and that concatenating such images at the input layer of a deep learning network cannot optimally exploit the information provided by the MR modality, we propose a novel modality fusion module (MFM) that learns to spatially align MR-based feature maps before fusing them with CT-based feature maps. The proposed MFM can be easily implemented into any existing multimodal backbone network. Our implementation within the nnU-Net framework shows promising results on a dataset of CT and MR image pairs from the same patients. Furthermore, the evaluation on a clinically realistic scenario with the missing MR modality shows that MFM outperforms other state-of-the-art multimodal approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brouwer, C.L., Steenbakkers, R.J., Bourhis, J., et al.: CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG oncology and TROG consensus guidelines. Radiother. Oncol. 117, 83–90 (2015). https://doi.org/10.1016/j.radonc.2015.07.041
Chen, J., Zhan, Y., Xu, Y., Pan, X.: FAFNet: fully aligned fusion network for RGBD semantic segmentation based on hierarchical semantic flows. IET Image Process 17, 32–41 (2023). https://doi.org/10.1049/ipr2.12614
Chow, L.Q.M.: Head and neck cancer. N. Engl. J. Med. 382, 60–72 (2020). https://doi.org/10.1056/NEJMRA1715715
Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ben Ayed, I.: HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans. Med. Imaging 38, 1116–1126 (2019). https://doi.org/10.1109/TMI.2018.2878669
Dou, Q., Liu, Q., Heng, P.A., Glocker, B.: Unpaired multi-modal segmentation via knowledge distillation. IEEE Trans. Med. Imaging 39, 2415–2425 (2020). https://doi.org/10.1109/TMI.2019.2963882
Finnveden, L., Jansson, Y., Lindeberg, T.: Understanding when spatial transformer networks do not support invariance, and what to do about it. In: 25th International Conference on Pattern Recognition - ICPR 2020, Milan, Italy, pp. 3427–3434. IEEE (2020). https://doi.org/10.1109/ICPR48806.2021.9412997
Hu, X., Yang, K., Fei, L., Wang, K.: ACNet: attention based network to exploit complementary features for RGBD semantic segmentation. In: 26th International Conference on Image Processing - ICIP 2019, Taipei, Taiwan, pp. 1440–1444. IEEE (2019). https://doi.org/10.1109/ICIP.2019.8803025
Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z
Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Advances in Neural Information Processing Systems - NIPS 2015, vol. 28. Curran Associates, Montréal, QC, Canada (2015). https://doi.org/10.48550/arxiv.1506.02025
Jiang, J., Rimner, A., Deasy, J.O., Veeraraghavan, H.: Unpaired cross-modality educed distillation (CMEDL) for medical image segmentation. IEEE Trans. Med. Imaging 41, 1057–1068 (2022). https://doi.org/10.1109/TMI.2021.3132291
Maier-Hein, L., Reinke, A., Kozubek, M., et al.: BIAS: transparent reporting of biomedical image analysis challenges. Med. Image Anal. 66, 101796 (2020). https://doi.org/10.1016/j.media.2020.101796
Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: 28th International Conference on International Conference on Machine Learning - ICML 2011, Bellevue, WA, USA, pp. 689–696. Omnipress (2011)
Nikolov, S., Blackwell, S., Zverovitch, A., et al.: Clinically applicable segmentation of head and neck anatomy for radiotherapy: deep learning algorithm development and validation study. J. Med. Internet Res. 23, e26151 (2021). https://doi.org/10.2196/26151
Podobnik, G., Strojan, P., Peterlin, P., Ibragimov, B., Vrtovec, T.: HaN-Seg: the head and neck organ-at-risk CT and MR segmentation dataset. Med. Phys. 50, 1917–1927 (2023). https://doi.org/10.1002/mp.16197
Raudaschl, P.F., Zaffino, P., Sharp, G.C., et al.: Evaluation of segmentation methods on head and neck CT: auto-segmentation challenge 2015. Med. Phys. 44, 2020–2036 (2017). https://doi.org/10.1002/mp.12197
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sung, H., Ferlay, J., Siegel, R.L., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021). https://doi.org/10.3322/caac.21660
Valada, A., Mohan, R., Burgard, W.: Self-supervised model adaptation for multimodal semantic segmentation. Int. J. Comput. Vis. 128, 1239–1285 (2018). https://doi.org/10.1007/s11263-019-01188-y
Valindria, V.V., Pawlowski, N., Rajchl, M., et al.: Multi-modal learning from unpaired images: application to multi-organ segmentation in CT and MRI. In: 2018 IEEE Winter Conference on Applications of Computer Vision - WACV 2018, Lake Tahoe, NV, USA, pp. 547–556. IEEE (2018). https://doi.org/10.1109/WACV.2018.00066
Valverde, F.R., Hurtado, J.V., Valada, A.: There is more than meets the eye: self-supervised multi-object detection and tracking with sound by distilling multimodal knowledge. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition - CVPR 2021, Nashville, TN, USA, pp. 11607–11616. IEEE (2021). https://doi.org/10.1109/CVPR46437.2021.01144
Yan, F., Knochelmann, H.M., Morgan, P.F., et al.: The evolution of care of cancers of the head and neck region: state of the science in 2020. Cancers 12, 1543 (2020). https://doi.org/10.3390/cancers12061543
Yan, Y., et al.: Longitudinal detection of diabetic retinopathy early severity grade changes using deep learning. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2021. LNCS, vol. 12970, pp. 11–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87000-3_2
Zhang, Y., et al.: Modality-aware mutual learning for multi-modal medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 589–599. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_56
Zhang, Y., Sidibé, D., Morel, O., Mériaudeau, F.: Deep multimodal fusion for semantic image segmentation: a survey. Image Vis. Comput. 105, 104042 (2021). https://doi.org/10.1016/j.imavis.2020.104042
Zhou, T., Ruan, S., Canu, S.: A review: deep learning for medical image segmentation using multi-modality fusion. Array 3–4, 100004 (2019). https://doi.org/10.1016/j.array.2019.100004
Acknowledgments
This work was supported by the Slovenian Research Agency (ARRS) under grants J2-1732, P2-0232 and P3-0307, and partially by the Novo Nordisk Foundation under grant NFF20OC0062056.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Podobnik, G., Strojan, P., Peterlin, P., Ibragimov, B., Vrtovec, T. (2023). Multimodal CT and MR Segmentation of Head and Neck Organs-at-Risk. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_71
Download citation
DOI: https://doi.org/10.1007/978-3-031-43901-8_71
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43900-1
Online ISBN: 978-3-031-43901-8
eBook Packages: Computer ScienceComputer Science (R0)