Skip to main content

Graph-Theoretic Automatic Lesion Tracking and Detection of Patterns of Lesion Changes in Longitudinal CT Studies

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14224))

  • 3338 Accesses

Abstract

Radiological follow-up of oncological patients requires the analysis and comparison of multiple unregistered scans acquired every few months. This process is currently partial, time-consuming and subject to variability. We present a new, generic, graph-based method for tracking individual lesion changes and detecting patterns in the evolution of lesions over time. The tasks are formalized as graph-theoretic problems in which lesions are vertices and edges are lesion pairings computed by overlap-based lesion matching. We define seven individual lesion change classes and five lesion change patterns that fully summarize the evolution of lesions over time. They are directly computed from the graph properties and its connected components with graph-based methods. Experimental results on lung (83 CTs from 19 patients) and liver (77 CECTs from 18 patients) datasets with more than two scans per patient yielded an individual lesion change class accuracy of 98% and 85%, and identification of patterns of lesion change with an accuracy of 96% and 76%, respectively. Highlighting unusual lesion labels and lesion change patterns in the graph helps radiologists identify overlooked or faintly visible lesions. Automatic lesion change classification and pattern detection in longitudinal studies may improve the accuracy and efficiency of radiological interpretation and disease status evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eisenhauer, E.A., Therasse, P., Bogaerts, J.: New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). Eur. J. Cancer 45(2), 228–247 (2009)

    Google Scholar 

  2. Joskowicz, L., Cohen, D., Caplan, N., Sosna, J.: Inter-observer variability of manual contour delineation of structures in CT. Eur. Radiol. 29(3), 1391–1399 (2019)

    Article  Google Scholar 

  3. Szeskin, A., Rochman, S., Weis, S., Lederman, R., Sosna, J., Joskowicz, L.: Liver lesion changes analysis in longitudinal CECT scans by simultaneous deep learning voxel classification with SimU-Net. Med. Image Anal. 83(1) (2023)

    Google Scholar 

  4. Shafiei, A., et al.: CT evaluation of lymph nodes that merge or split during the course of a clinical trial: limitations of RECIST 1.1. Radiol. Imaging Cancer 3(3) (2021)‏

    Google Scholar 

  5. Beyer, F., et al.: Clinical evaluation of a software for automated localization of lung nodules at follow-up CT examinations. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und Nuklearmedizin 176(6), 829–836 (2004)‏

    Google Scholar 

  6. Lee, K.W., Kim, M., Gierada, D.S., Bae, K.T.: Performance of a computer-aided program for automated matching of metastatic pulmonary nodules detected on follow-up chest CT. Am. J. Roentgenol. 189(5), 1077–1081 (2007)

    Article  Google Scholar 

  7. Koo, C.W., et al.: Improved efficiency of CT interpretation using an automated lung nodule matching program. Am. J. Roentgenol. 199(1), 91–95 (2012)

    Article  Google Scholar 

  8. Tao, C., Gierada, D.S., Zhu, F., Pilgram, T.K., Wang, J.H., Bae, K.T.: Automated matching of pulmonary nodules: evaluation in serial screening chest CT. Am. J. Roentgen. 192(3), 624–628 (2009)

    Article  Google Scholar 

  9. Beigelman-Aubry, C., Raffy, P., Yang, W., Castellino, R.A., Grenier, P.A.: Computer-aided detection of solid lung nodules on follow-up MDCT screening: evaluation of detection, tracking, and reading time. Am. J. Roentgenol. 189(4), 948–955 (2007)

    Article  Google Scholar 

  10. Moltz, J.H., Schwier, M., Peitgen, H.O.: A general framework for automatic detection of matching lesions in follow-up CT. In: Proceedings IEEE International Symposium on Biomedical Imaging, pp. 843–846 (2009)‏

    Google Scholar 

  11. Rafael-Palou, X., et al.: Re-identification and growth detection of pulmonary nodules without image registration using 3D Siamese neural networks. Med. Image Anal. 67, 101823 (2021)

    Article  Google Scholar 

  12. Cai, J., et al.: Deep lesion tracker: monitoring lesions in 4D longitudinal imaging studies. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 15159–15169 (2021)

    Google Scholar 

  13. Tang, W., Kang, H., Zhang, H., Yu, P., Arnold, C.W., Zhang, R.: Transformer lesion tracker. arXiv preprint arXiv:2206.06252 (2022)‏

  14. Yan, K., Wang, X., Lu, L., Summers, R.M.: DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501 (2018)

    Article  Google Scholar 

  15. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings IEEE Conference Computer Vision & Pattern Recognition, pp. 2544–2550 (2010)‏

    Google Scholar 

  16. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.S.: Evolution of Siamese visual tracking with very deep networks. In: Proceedings IEEE Conference Computer Vision & Pattern Recognition, pp. 16–20 (2019)

    Google Scholar 

  17. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Proceedings European Conference on Computer Vision, pp. 402–419 (2020)

    Google Scholar 

  18. Santoro-Fernandes, V., et al.: Development and validation of a longitudinal soft-tissue metastatic lesion matching algorithm. Phys. Med. Biol. 66(15), 155017 (2021)

    Article  Google Scholar 

  19. Padfield, D., Rittscher, J., Roysam, B.: Coupled minimum-cost flow cell tracking for high-throughput quantitative analysis. Med. Image Anal. 15(4), 650–668 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Joskowicz .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1125 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Veroli, B., Lederman, R., Sosna, J., Joskowicz, L. (2023). Graph-Theoretic Automatic Lesion Tracking and Detection of Patterns of Lesion Changes in Longitudinal CT Studies. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics