Skip to main content

Discovering Brain Network Dysfunction in Alzheimer’s Disease Using Brain Hypergraph Neural Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14224))

  • 3679 Accesses

Abstract

Previous studies have shown that neurodegenerative diseases, specifically Alzheimer’s disease (AD), primarily affect brain network function due to neuropathological burdens that spread throughout the network, similar to prion-like propagation. Therefore, identifying brain network alterations is crucial in understanding the pathophysiological mechanism of AD progression. Although recent graph neural network (GNN) analyses have provided promising results for early AD diagnosis, current methods do not account for the unique topological properties and high-order information in complex brain networks. To address this, we propose a brain network-tailored hypergraph neural network (BrainHGNN) to identify the propagation patterns of neuropathological events in AD. Our BrainHGNN approach constructs a hypergraph using region of interest (ROI) identity encoding and random-walk-based sampling strategy, preserving the unique identities of brain regions and characterizing the intrinsic properties of the brain-network organization. We then propose a self-learned weighted hypergraph convolution to iteratively update node and hyperedge messages and identify AD-related propagation patterns. We conducted extensive experiments on ADNI data, demonstrating that our BrainHGNN outperforms other state-of-the-art methods in classification performance and identifies significant propagation patterns with discriminative differences in group comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Destrieux, C., Fischl, B., Dale, A., Halgren, E.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1), 1–15 (2010)

    Article  Google Scholar 

  2. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3558–3565 (2019)

    Google Scholar 

  3. Fillard, P., et al.: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. Neuroimage 56(1), 220–234 (2011)

    Article  Google Scholar 

  4. Gao, Y., Feng, Y., Ji, S., Ji, R.: HGNN\(^+\): general hypergraph neural networks. IEEE Trans. Pattern Anal. Mach. Intell. (2022). https://doi.org/10.1109/tpami.2022.3182052

    Article  Google Scholar 

  5. Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V.: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. 101(13), 4637–4642 (2004)

    Article  Google Scholar 

  6. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  7. Ji, J., Ren, Y., Lei, M.: Fc-hat: Hypergraph attention network for functional brain network classification. Inf. Sci. 608, 1301–1316 (2022)

    Article  Google Scholar 

  8. Jie, B., Wee, C.Y., Shen, D., Zhang, D.: Hyper-connectivity of functional networks for brain disease diagnosis. Med. Image Anal. 32, 84–100 (2016)

    Article  Google Scholar 

  9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  10. Li, X., Dvornek, N.C., Zhou, Y., Zhuang, J., Ventola, P., Duncan, J.S.: Graph neural network for interpreting task-fMRI biomarkers. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 485–493. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_54

    Chapter  Google Scholar 

  11. Li, X., et al.: BrainGNN: Interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  12. Li, X., et al.: Pooling regularized graph neural network for fMRI biomarker analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 625–635. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_61

    Chapter  Google Scholar 

  13. Liu, J., et al.: Complex brain network analysis and its applications to brain disorders: a survey. Complexity 2017 (2017)

    Google Scholar 

  14. Pievani, M., Filippini, N., Van Den Heuvel, M.P., Cappa, S.F., Frisoni, G.B.: Brain connectivity in neurodegenerative diseases-from phenotype to proteinopathy. Nat. Rev. Neurol. 10(11), 620–633 (2014)

    Article  Google Scholar 

  15. Sepulcre, J., et al.: Neurogenetic contributions to amyloid beta and tau spreading in the human cortex. Nat. Med. 24(12), 1910–1918 (2018)

    Article  Google Scholar 

  16. Sorg, C., et al.: Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc. Natl. Acad. Sci. 104(47), 18760–18765 (2007)

    Article  Google Scholar 

  17. Sporns, O.: Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15, 247–262 (2013)

    Article  Google Scholar 

  18. Stam, C.J.: Modern network science of neurological disorders. Nat. Rev. Neurosci. 15(10), 683–695 (2014)

    Article  Google Scholar 

  19. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al.: Graph attention networks. Stat 1050(20), 10–48550 (2017)

    Google Scholar 

  20. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  21. Yang, H., et al.: Interpretable multimodality embedding of cerebral cortex using attention graph network for identifying bipolar disorder. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 799–807. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_89

    Chapter  Google Scholar 

  22. Zhang, L., Wang, M., Liu, M., Zhang, D.: A survey on deep learning for neuroimaging-based brain disorder analysis. Front. Neurosci. 14, 779 (2020)

    Article  Google Scholar 

  23. Zhang, Y., et al.: Joint assessment of structural, perfusion, and diffusion MRI in Alzheimer’s disease and frontotemporal dementia. Int. J. Alzheimer’s Dis. 2011 (2011)

    Google Scholar 

  24. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Advances in Neural Information Processing Systems, vol. 19 (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China (2022YFE0112200), the National Natural Science Foundation of China (U21A20520,62102153), the Science and Technology Project of Guangdong Province (2022A0505050014), the Guangdong Key Laboratory of Human Digital Twin Technology (2022B1212010004), Natural Science Foundation of Guangdong Province of China (2022A1515011162), Key-Area Research and Development Program of Guangzhou City (202206030009), and the China Postdoctoral Science Foundation (2021M691062, 2023T160226). The neuroimaging datasets used in this study were supported by the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiazhou Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, H., Zhou, Z., Yang, D., Wu, G., Chen, J. (2023). Discovering Brain Network Dysfunction in Alzheimer’s Disease Using Brain Hypergraph Neural Network. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics