Skip to main content

Contrastive Feature Decoupling for Weakly-Supervised Disease Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Machine learning based Computer-Aided Diagnosis (CAD) aims to assist clinicians in the pathological diagnosis process. While dealing with video pathological diagnosis such as colonoscopy polyp detection, the recent SOTA method employs Weakly-supervised Video Anomaly Detection (WVAD) in the Multiple Instance Learning (MIL) scenarios to concern the temporal correlation within data and to formulate the concept of the interest disease simultaneously. Such a MIL-based WVAD method leverages video-level annotations to detect frame-level diseases and shows promising results. This paper casts the video pathological diagnosis as a MIL-based WVAD task and introduces Contrastive Feature Decoupling (CFD) network to decouple normal and abnormal feature ingredients per snippet. With such decoupled features, we are able to highlight the abnormal feature ingredients for accurately reasoning the disease score per snippet. The core components within our CFD model are the memory bank and contrastive loss. The former is used to learn atoms for representing normal features, and the latter is used to encourage our model to gain robust disease detection. We demonstrate that our CFD network is achieving new SOTA performance on the existing Polyp dataset and the introduced PANDA-MIL dataset. Our dataset are available at https://github.com/Jhih-Ciang/PANDA-MIL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1), 283 (2020)

    Article  Google Scholar 

  2. Bulten, W., et al.: The PANDA challenge: prostate cANcer graDe assessment using the Gleason grading system (2020). https://doi.org/10.5281/zenodo.3715938

  3. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR, pp. 6299–6308 (2017)

    Google Scholar 

  4. Feng, J.C., Hong, F.T., Zheng, W.S.: MIST: multiple instance self-training framework for video anomaly detection. In: CVPR, pp. 14009–14018 (2021)

    Google Scholar 

  5. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  6. Kazeminia, S., Sadafi, A., Makhro, A., Bogdanova, A., Albarqouni, S., Marr, C.: Anomaly-aware multiple instance learning for rare anemia disorder classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 341–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_33

    Chapter  Google Scholar 

  7. Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski, T.J.: Dictionary learning algorithms for sparse representation. Neural Comput. 15(2), 349–396 (2003)

    Article  Google Scholar 

  8. Li, L., Xu, M., Wang, X., Jiang, L., Liu, H.: Attention based glaucoma detection: a large-scale database and CNN model. In: CVPR, pp. 10571–10580 (2019)

    Google Scholar 

  9. Ma, X.Y., et al.: DSP-NET: deeply-supervised pseudo-siamese network for dynamic angiographic image matching. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 44–53. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_5

    Chapter  Google Scholar 

  10. Ma, Y., Chen, X., Cheng, K., Li, Y., Sun, B.: LDPolypVideo benchmark: a large-scale colonoscopy video dataset of diverse polyps. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 387–396. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_37

    Chapter  Google Scholar 

  11. Shao, W., et al.: Weakly supervised registration of prostate MRI and histopathology images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 98–107. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_10

    Chapter  Google Scholar 

  12. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: CVPR, pp. 6479–6488 (2018)

    Google Scholar 

  13. Tian, Y., Pang, G., Chen, Y., Singh, R., Verjans, J.W., Carneiro, G.: Weakly-supervised video anomaly detection with robust temporal feature magnitude learning. In: ICCV, pp. 4975–4986 (2021)

    Google Scholar 

  14. Tian, Y., et al.: Contrastive transformer-based multiple instance learning for weakly supervised polyp frame detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 88–98. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_9

    Chapter  Google Scholar 

  15. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  16. Wan, B., Fang, Y., Xia, X., Mei, J.: Weakly supervised video anomaly detection via center-guided discriminative learning. In: ICME, pp. 1–6 (2020)

    Google Scholar 

  17. Windsor, R., Jamaludin, A., Kadir, T., Zisserman, A.: Context-aware transformers for spinal cancer detection and radiological grading. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 271–281. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_26

    Chapter  Google Scholar 

  18. Wu, J.C., Hsieh, H.Y., Chen, D.J., Fuh, C.S., Liu, T.L.: Self-supervised sparse representation for video anomaly detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13673, pp. 729–745. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19778-9_42

    Chapter  Google Scholar 

  19. Xia, Y., et al.: Effective pancreatic cancer screening on non-contrast CT scans via anatomy-aware transformers. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 259–269. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_25

    Chapter  Google Scholar 

  20. Zaheer, M.Z., Mahmood, A., Astrid, M., Lee, S.-I.: CLAWS: clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 358–376. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_22

    Chapter  Google Scholar 

  21. Zhang, C., Cao, M., Yang, D., Chen, J., Zou, Y.: Cola: weakly-supervised temporal action localization with snippet contrastive learning. In: CVPR, pp. 16010–16019 (2021)

    Google Scholar 

  22. Zhang, W., et al.: A multi-task network with weight decay skip connection training for anomaly detection in retinal fundus images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 656–666. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_63

    Chapter  Google Scholar 

  23. Zhao, H., et al.: Towards unsupervised ultrasound video clinical quality assessment with multi-modality data. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 228–237. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_22

    Chapter  Google Scholar 

  24. Zhong, J.X., Li, N., Kong, W., Liu, S., Li, T.H., Li, G.: Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection. In: CVPR, pp. 1237–1246 (2019)

    Google Scholar 

Download references

Acknowledgement

This research was supported by National Science and Technology Council of Taiwan, R.O.C., under Grants NSTC 112-2221-E-002-189-MY2 and MOST 111-2221-E-002-174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding-Jie Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 462 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, JC., Chen, DJ., Fuh, CS. (2023). Contrastive Feature Decoupling for Weakly-Supervised Disease Detection. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics