Skip to main content

DCAug: Domain-Aware and Content-Consistent Cross-Cycle Framework for Tumor Augmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14224))

  • 3325 Accesses

Abstract

Existing tumor augmentation methods cannot deal with both domain and content information at the same time, causing a content distortion or domain gap (distortion problem) in the generated tumor. To address this challenge, we propose a Domain-aware and Content-consistent Cross-cycle Framework, named DCAug, for tumor augmentation to eliminate the distortion problem and improve the diversity and quality of synthetic tumors. Specifically, DCAug consists of one novel Cross-cycle Framework and two novel contrastive learning strategies: 1) Domain-aware Contrastive Learning (DaCL) and 2) Cross-domain Consistency Learning (CdCL), which disentangles the image information into two solely independent parts: 1) Domain-invariant content information; 2) Individual-specific domain information. During new sample generation, DCAug maintains the consistency of domain-invariant content information while adaptively adjusting individual-specific domain information through the advancement of DaCL and CdCL. We analyze and evaluate DCAug on two challenging tumor segmentation tasks. Experimental results (10.48% improvement in KiTS, 5.25% improvement in ATLAS) demonstrate that DCAug outperforms current state-of-the-art tumor augmentation methods and significantly improves the quality of the synthetic tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C., Li, J., Han, X., Liu, X., Yu, Y.: Compound domain generalization via meta-knowledge encoding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7119–7129 (2022)

    Google Scholar 

  2. Chen, H., et al.: Artistic style transfer with internal-external learning and contrastive learning. Adv. Neural Inf. Process. Syst. 34, 26561–26573 (2021)

    Google Scholar 

  3. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: International Conference on Learning Representations (2018)

    Google Scholar 

  4. Heller, N., et al.: The kits19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. arXiv preprint arXiv:1904.00445 (2019)

  5. Hong, M., Choi, J., Kim, G.: Stylemix: separating content and style for enhanced data augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14862–14870 (2021)

    Google Scholar 

  6. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  7. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  8. Jeong, S., Kim, Y., Lee, E., Sohn, K.: Memory-guided unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6558–6567 (2021)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Kotovenko, D., Sanakoyeu, A., Ma, P., Lang, S., Ommer, B.: A content transformation block for image style transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10032–10041 (2019)

    Google Scholar 

  11. Liew, S.L., et al.: A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Sci. Data 5(1), 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  12. Ling, J., Xue, H., Song, L., Xie, R., Gu, X.: Region-aware adaptive instance normalization for image harmonization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9361–9370 (2021)

    Google Scholar 

  13. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  14. Wang, R., Zheng, G.: CyCMIS: cycle-consistent cross-domain medical image segmentation via diverse image augmentation. Med. Image Anal. 76, 102328 (2022)

    Article  Google Scholar 

  15. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  16. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  17. Zhang, X., et al.: CarveMix: a simple data augmentation method for brain lesion segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 196–205. Springer, Carvemix: A simple data augmentation method for brain lesion segmentation (2021). https://doi.org/10.1007/978-3-030-87193-2_19

    Chapter  Google Scholar 

  18. Zhu, Q., Du, B., Yan, P.: Boundary-weighted domain adaptive neural network for prostate MR image segmentation. IEEE Trans. Med. Imaging 39(3), 753–763 (2019)

    Article  Google Scholar 

  19. Zhu, Q., Wang, Y., Yin, L., Yang, J., Liao, F., Li, S.: SelfMix: a self-adaptive data augmentation method for lesion segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. MICCAI 2022. LNCS, vol. 13434, pp 683–692. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_65

Download references

Acknowledgments

This work was supported by cross-innovation talent project in Renmin Hospital of Wuhan University (grant number JCRCZN-2022-016); Natural Science Foundation of Hubei Province (grant number 2022CFB252); Undergraduate education quality construction comprehensive reform project (grant number 2022ZG282) and the National Natural Science Foundation of China (grant number 81860276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Q., Yin, L., Tang, Q., Wang, Y., Cheng, Y., Li, S. (2023). DCAug: Domain-Aware and Content-Consistent Cross-Cycle Framework for Tumor Augmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics