Skip to main content

CARL: Cross-Aligned Representation Learning for Multi-view Lung Cancer Histology Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14224))

  • 3445 Accesses

Abstract

Accurately classifying the histological subtype of non-small cell lung cancer (NSCLC) using computed tomography (CT) images is critical for clinicians in determining the best treatment options for patients. Although recent advances in multi-view approaches have shown promising results, discrepancies between CT images from different views introduce various representations in the feature space, hindering the effective integration of multiple views and thus impeding classification performance. To solve this problem, we propose a novel method called cross-aligned representation learning (CARL) to learn both view-invariant and view-specific representations for more accurate NSCLC histological subtype classification. Specifically, we introduce a cross-view representation alignment learning network which learns effective view-invariant representations in a common subspace to reduce multi-view discrepancies in a discriminability-enforcing way. Additionally, CARL learns view-specific representations as a complement to provide a holistic and disentangled perspective of the multi-view CT images. Experimental results demonstrate that CARL can effectively reduce the multi-view discrepancies and outperform other state-of-the-art NSCLC histological subtype classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aerts, H.J.W.L. et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative Radiomics approach. Nat. Commun. 5(1), 4006 (2014). https://doi.org/10.1038/ncomms5006

  2. Bakr, S. et al.: A radiogenomic dataset of non-small cell lung cancer. Sci. Data 5(1), 180202 (2018). https://doi.org/10.1038/sdata.2018.202

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  4. Chaunzwa, T.L. et al.: Deep learning classification of lung cancer histology using CT images. Sci. Rep. 11(1), 5471 (2021). https://doi.org/10.1038/s41598-021-84630-x

  5. Clark, K., et al.: The cancer imaging archive (TCIA): Maintaining and operating a public information repository. J. Digit Imaging. 26(6), 1045–1057 (2013). https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  Google Scholar 

  7. Dou, Q., et al.: Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans. Biomed. Eng. 64(7), 1558–1567 (2017). https://doi.org/10.1109/TBME.2016.2613502

    Article  Google Scholar 

  8. Feng, Y., et al.: GVCNN: Group-view convolutional neural networks for 3D shape recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 264–272 (2018). https://doi.org/10.1109/CVPR.2018.00035

  9. Guo, Y., et al.: Histological subtypes classification of lung cancers on CT images using 3D deep learning and radiomics. Acad. Radiol. 28(9), e258–e266 (2021). https://doi.org/10.1016/j.acra.2020.06.010

    Article  Google Scholar 

  10. He, K., et al.: Deep Residual Learning for Image Recognition. http://arxiv.org/abs/1512.03385 (2015). https://doi.org/10.48550/arXiv.1512.03385

  11. Li, C., et al.: Multi-view mammographic density classification by dilated and attention-guided residual learning. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(3), 1003–1013 (2021). https://doi.org/10.1109/TCBB.2020.2970713

    Article  Google Scholar 

  12. Li, S., et al.: Adaptive multimodal fusion with attention guided deep supervision net for grading hepatocellular carcinoma. IEEE J. Biomed. Health Inform. 26(8), 4123–4131 (2022). https://doi.org/10.1109/JBHI.2022.3161466

    Article  MathSciNet  Google Scholar 

  13. Marentakis, P., et al.: Lung cancer histology classification from CT images based on radiomics and deep learning models. Med. Biol. Eng. Comput. 59(1), 215–226 (2021). https://doi.org/10.1007/s11517-020-02302-w

    Article  Google Scholar 

  14. Meng, Z., et al.: MSMFN: an ultrasound based multi-step modality fusion network for identifying the histologic subtypes of metastatic cervical lymphadenopathy. In: IEEE Transactions on Medical Imaging, pp. 1–1 (2022). https://doi.org/10.1109/TMI.2022.3222541

  15. Pereira, T. et al.: Comprehensive perspective for lung cancer characterisation based on AI solutions using CT images. J. Clin. Med. 10(1), 118 (2021). https://doi.org/10.3390/jcm10010118

  16. Sahu, P., et al.: A lightweight multi-section CNN for lung nodule classification and malignancy estimation. IEEE J. Biomed. Health Inform. 23(3), 960–968 (2019). https://doi.org/10.1109/JBHI.2018.2879834

    Article  Google Scholar 

  17. Sedrez, J.A., et al.: Non-invasive postural assessment of the spine in the sagittal plane: a systematic review. Motricidade 12(2), 140–154 (2016). https://doi.org/10.6063/motricidade.6470

    Article  Google Scholar 

  18. Su, H., et al.: Multi-view convolutional neural networks for 3D shape recognition. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 945–953 (2015). https://doi.org/10.1109/ICCV.2015.114

  19. Su, R., et al.: Identification of expression signatures for non-small-cell lung carcinoma subtype classification. Bioinformatics 36(2), 339–346 (2019). https://doi.org/10.1093/bioinformatics/btz557

  20. Tomassini, S., et al.: Lung nodule diagnosis and cancer histology classification from computed tomography data by convolutional neural networks: a survey. Comput. Biol. Med. 146, 105691 (2022). https://doi.org/10.1016/j.compbiomed.2022.105691

    Article  Google Scholar 

  21. Wang, J., et al.: UASSR: unsupervised arbitrary scale super-resolution reconstruction of single anisotropic 3D images via disentangled representation learning. In: Wang, L. et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022, pp. 453–462 Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_43

  22. Wu, X., et al.: Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: a multicentre study. Eur. J. Radiol. 128, 109041 (2020). https://doi.org/10.1016/j.ejrad.2020.109041

    Article  Google Scholar 

  23. Yanagawa, M., et al.: Diagnostic performance for pulmonary adenocarcinoma on CT: comparison of radiologists with and without three-dimensional convolutional neural network. Eur. Radiol. 31(4), 1978–1986 (2021). https://doi.org/10.1007/s00330-020-07339-x

    Article  Google Scholar 

  24. Zellinger, W., et al.: Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning. http://arxiv.org/abs/1702.08811 (2019)

  25. Zhang, N., et al.: Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol. Cancer. 19(1), 101 (2020). https://doi.org/10.1186/s12943-020-01221-6

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grants 61971393, 62272325, 61871361 and 61571414.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghui Wang or Ao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, Y. et al. (2023). CARL: Cross-Aligned Representation Learning for Multi-view Lung Cancer Histology Classification. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics