Skip to main content

Learning with Domain-Knowledge for Generalizable Prediction of Alzheimer’s Disease from Multi-site Structural MRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14224))

  • 3429 Accesses

Abstract

Construct a generalizable model for the diagnosis of Alzheimer’s disease (AD) is an important task in medical imaging. While deep neural networks have recently advanced classification performance for various diseases using structural magnetic resonance imaging (sMRI), existing methods often provide suboptimal and untrustworthy results because they do not incorporate domain-knowledge and global context information. Additionally, most state-of-the-art deep learning methods rely on multi-stage preprocessing pipelines, which are inefficient and prone to errors. In this paper, we propose a novel domain-knowledge-constrained neural network for automatic diagnosis of AD using multi-center sMRI. Specifically, we incorporate domain-knowledge into a ResNet-like architecture. We explicitly enforce the network to learn domain invariant and domain specific features by jointly training multiple weighted classifiers, so that pixel-wise predictive performance generalizes to unseen images. In addition, the network directly takes segmentation-free and patch-free images in original resolution as input, which offers accurate inference with global context information and accurate individualized abnormalities to further refines reproducible predictions. The framework was evaluated on a set of sMRI collected from 7 independent centers. The proposed approach identifies important discriminative brain abnormalities associated with AD. Experimental results demonstrate superior performance of our method compared to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guptha, S.H., Holroyd, E., Campbell, G.: Progressive lateral ventricular enlargement as a clue to Alzheimer’s disease. Lancet 359(9322), 2040 (2002). https://doi.org/10.1016/S0140-6736(02)08806-2

  2. Zhu, W., Sun, L., Huang, J., Han, L., Zhang, D.: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI. IEEE Trans. Med. Imaging 40(9), 2354–2366 (2021)

    Article  Google Scholar 

  3. Wen, J., et al.: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med. Image Anal. 63, 101694 (2020). https://www.sciencedirect.com/science/article/pii/S1361841520300591

  4. Wang, H., et al.: Super-resolution based patch-free 3D medical image segmentation with self-supervised guidance (2022). https://arxiv.org/abs/2210.14645

  5. Jin, D., et al.: Generalizable, reproducible, and neuroscientifically interpretable imaging biomarkers for Alzheimer’s disease. Adv. Sci. 7(14), 2000675 (2020)

    Article  Google Scholar 

  6. Goenka, N., Tiwari, S.: Deep learning for Alzheimer prediction using brain biomarkers. Artif. Intell. Rev. 54(7), 4827–4871 (2021)

    Article  Google Scholar 

  7. Gutiérrez-Becker, B., Wachinger, C.: Deep multi-structural shape analysis: application to neuroanatomy. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 523–531. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_60

    Chapter  Google Scholar 

  8. Nguyen, H.-D., Clément, M., Mansencal, B., Coupé, P.: Interpretable differential diagnosis for Alzheimer’s disease and Frontotemporal dementia. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part I, pp. 55–65. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16431-6_6

  9. Hedges, E.P., et al.: Reliability of structural MRI measurements: the effects of scan session, head tilt, inter-scan interval, acquisition sequence, freesurfer version and processing stream. NeuroImage 246, 118751 (2022). https://www.sciencedirect.com/science/article/pii/S1053811921010235

  10. Zhang, J., Gao, Y., Gao, Y., Munsell, B.C., Shen, D.: Detecting anatomical landmarks for fast Alzheimer’s disease diagnosis. IEEE Trans. Med. Imaging 35(12), 2524–2533 (2016)

    Article  Google Scholar 

  11. Danig, S., Orsborn, A.L., Moorman, H.G., Carmena, J.M.: Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces. Technical report 7 (2013)

    Google Scholar 

  12. Li, Y., Murias, M., Major, S., Dawson, G., Carlson, D.E.: On target shift in adversarial domain adaptation. In: AISTATS, March 2019

    Google Scholar 

  13. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. Int. Conf. Mach. Learn. 5(11), 3162–3174 (2018). http://arxiv.org/abs/1711.03213

  14. Sun, S., Shi, H., Wu, Y.: A survey of multi-source domain adaptation. Inf. Fusion 24, 84–92 (2015)

    Article  Google Scholar 

  15. Dozat, T.: Incorporating Nesterov momentum into Adam. In: ICLR Workshop, vol. 1, pp. 2013–2016 (2016)

    Google Scholar 

  16. Jiang, J.: A literature survey on domain adaptation of statistical Classifiers. UIUC Technical report, pp. 1–12, March 2008

    Google Scholar 

  17. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: MetaReg: towards domain generalization using meta-regularization. In: NeurIPS, vol. 2018-Decem, pp. 998–1008 (2018). http://papers.nips.cc/paper/7378-metareg-towards-domain-generalization-using-meta-regularization

  18. Li, D., Yang, Y., Song, Y.-Z., Hospedales, T.M.: Learning to generalize: meta-learning for domain generalization. In: Thirty-Second AAAI Conference on Artificial Intelligence, vol. 4 (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/16067

  19. Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.-Z., Hospedales, T.M.: Episodic training for domain generalization. In: IEEE International Conference on Computer Vision (2019). https://arxiv.org/pdf/1902.00113.pdf

  20. Johansson, F.D., Sontag, D., Ranganath, R.: Support and invertibility in domain-invariant representations. In: Chaudhuri, K., Sugiyama, M. (eds.) Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, vol. 89, pp. 527–536. PMLR, 16–18 April 2019

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv e-prints, arXiv:1512.03385, December 2015

  22. Zhao, K., et al.: Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer’s disease: diagnosis, longitudinal progress and biological basis. Sci. Bull. 65(13), 1103–1113 (2020). https://www.sciencedirect.com/science/article/pii/S2095927320302140

  23. Tu, L., Talbot, A., Gallagher, N.M., Carlson, D.E.: Supervising the decoder of variational autoencoders to improve scientific utility. IEEE Trans. Signal Process. 70, 5954–5966 (2022)

    Article  Google Scholar 

  24. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 62201091, the Startup Funds at Beijing University of Posts and Telecommunications (BUPT), and the BUPT innovation and entrepreneurship support program under 2023-YC-A208. We are grateful to the Multi-center Alzheimer Disease Imaging Consortium (PI: Prof. Xi Zhang, Prof. Yuying Zhou, Prof. Ying Han, and Prof. Qing Wang). The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies or sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyun Tu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Li, Y., Zhou, F., Liu, Y., Tu, L. (2023). Learning with Domain-Knowledge for Generalizable Prediction of Alzheimer’s Disease from Multi-site Structural MRI. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics