
YONA: You Only Need One Adjacent
Reference-frame for Accurate and Fast Video

Polyp Detection

Yuncheng Jiang1,2,4,⋆, Zixun Zhang1,2,4 ⋆, Ruimao Zhang3, Guanbin Li5,
Shuguang Cui1,2, and Zhen Li1,2,4 B

1 SSE, The Chinese University of Hong Kong, Shenzhen
2 FNii, The Chinese University of Hong Kong, Shenzhen
3 SDS, The Chinese University of Hong Kong, Shenzhen

4 Shenzhen Research Insititute of Big Data
5 School of Computer Science and Engineering, Sun Yat-sen University

yunchengjiang@link.cuhk.edu.cn, lizhen@cuhk.edu.cn

Abstract. Accurate polyp detection is essential for assisting clinical rec-
tal cancer diagnoses. Colonoscopy videos contain richer information than
still images, making them a valuable resource for deep learning methods.
However, unlike common fixed-camera video, the camera-moving scene
in colonoscopy videos can cause rapid video jitters, leading to unstable
training for existing video detection models. In this paper, we propose
the YONA (You Only Need one Adjacent Reference-frame) method,
an efficient end-to-end training framework for video polyp detection.
YONA fully exploits the information of one previous adjacent frame
and conducts polyp detection on the current frame without multi-frame
collaborations. Specifically, for the foreground, YONA adaptively aligns
the current frame’s channel activation patterns with its adjacent refer-
ence frames according to their foreground similarity. For the background,
YONA conducts background dynamic alignment guided by inter-frame
difference to eliminate the invalid features produced by drastic spatial
jitters. Moreover, YONA applies cross-frame contrastive learning dur-
ing training, leveraging the ground truth bounding box to improve the
model’s perception of polyp and background. Quantitative and quali-
tative experiments on three public challenging benchmarks demonstrate
that our proposed YONA outperforms previous state-of-the-art competi-
tors by a large margin in both accuracy and speed.

Keywords: Video Polyp Detection · Colonoscopy · Feature Alignment
· Contrastive Learning.

1 Introduction

Colonoscopy plays a crucial role in identifying and removing early polyps and
reducing mortality rates associated with rectal cancer. Over the past few years,
⋆ Equal contribution
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Fig. 1. (a) The histogram of the motion IoUs distribution on two datasets. Lower
motion IoU denotes a faster target moving speed. The proportion of slow, medium
and fast-moving targets is listed at the top of the figure. (b) The performance of
FGFA [26] using multiple reference frames increases on ImageNetVID while decreasing
on LDPolypVideo. (c) The typical challenges in colonoscopy videos. Yellow arrows
point to the polyp, and red arrows point to distraction that causes false detection.

the research community has devoted great effort to understanding colonoscopy
videos using either optical flow [23,22] or temporal information aggregation [12,16,19,5]
between multiple frames.

However, those works are mainly designed based on the experience of pre-
vious natural video object detection studies, ignoring the inherent uniqueness
of the colonoscopy motion patterns. Thus, we rethink the video polyp detection
task and conclude three core challenges in colonoscopy videos. 1) Fast motion
speed. In Fig. 1(a), we show the target motion speed [26] 6 on ImageNetVID [14]
(natural) and LDPolypVideo [9] (colonoscopy) dataset. The motion speed in
ImageNetVID evenly distributes in three intervals. In contrast, most targets in
LDPolypVideo fall in the fast speed zone, leading to a large variance in the ad-
jacent foreground features, like motion blur or occlusion, as shown in Fig. 1(c).
Thus we conjecture that collaborating too many frames for polyp video detec-
tion will increase the misalignment between adjacent frames and leads to poor
detection performance. Fig. 1(b) shows the performance of FGFA [26] on two
datasets with increasing reference frames. The different trends of the two lines
confirm our hypothesis. 2) Complex background Different from the common
camera-fixed videos, the camera-moving of colonoscopy video will introduce large
disturbances between adjacent frames (e.g., specular reflection, bubbles, water,
etc.), as shown in Fig. 1(d). Those abnormalities disrupt the integrity of back-
ground structures and thus affect the effect of multi-frame fusion. 3) Concealed
polyps As shown in Fig. 1(e), we noticed that some polyps could be seen as
concealed objects in the colonoscopy video since such polyps have a very similar

6 averaged intersection-over-union scores of target in the nearby frames (±10 frames)
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appearance to the intestine wall. The model will be confused by such frames in
inference and result in high false-positive or false-negative predictions.

To address the above issues, we propose the YONA framework, which fully
exploits the reference frame information and only needs one adjacent reference
frame for accurate video polyp detection. Specifically, we propose the Foreground
Temporal Alignment (FTA) module to explicitly align the foreground channel
activation patterns between adjacent features according to their foreground sim-
ilarity. In addition, we design the Background Dynamic Alignment (BDA) mod-
ule after FTA that further learns the inter-frame background spatial dynamics
to better eliminate the influence of motion speed and increase the training ro-
bustness. Finally, parallel to FTA and BDA, we introduce the Cross-frame Box-
assisted Contrastive Learning (CBCL) that fully utilizes the box annotations to
enlarge polyp and background discrimination in embedding space.

In summary, our contributions are in three-folds: (1) To the best of our knowl-
edge, we are the first to investigate the obstacles to the development of existing
video polyp detectors and conclude that two-frame collaboration is enough for
video polyp detection. (2) We propose the YONA, a novel framework for video
polyp detection. It composes the foreground and background alignment modules
to align the features under the fast-moving condition. It further introduces the
cross-frame contrastive learning module to enhance the model’s discrimination
ability of polyps and intestine walls. (3) Extensive experiments demonstrate that
our YONA achieves new state-of-the-art performance on three large-scale public
video polyp detection datasets.

2 Method

The whole pipeline is shown in Fig. 2. We leverage the CenterNet [25] as the
base detector. Given a clip of a colonoscopy video, we take the current frame
as anchor I a and its adjacent previous frame as reference I r . The binary maps
Ma,Mr are generated using the bounding box of anchor and reference, where
the foreground pixels are assigned with 1 while the background with 0. At each
step, YONA first extracts multi-scale features from Ia, Ir using the backbone.
Then, multi-scale features are fused and up-sampled to the resolution of the
first stage as the intermediate features F a, F r. Then, we conduct foreground
temporal alignment (Fig. 2(a)) on intermediate features to align their channel
activation pattern. Next, the enhanced anchor feature F̃ is further refined by
the background dynamic alignment module (Fig. 2(b)) to mitigate the rapid
dynamic changes in the spatial field. The BDA’s output F ∗ is used to compute
the detection loss. Meanwhile, the intermediate features and binary maps are
used to calculate the contrastive loss during training to improve the model’s
perception of polyp and background (Fig. 2(c)).

Overall, the whole network is optimized with the combination loss function
in an end-to-end manner. The final loss is composed of the same detection loss
with CenterNet and our proposed contrastive loss, formulated as L = Ldetection+
λcontrastLcontrast.
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Fig. 2. Illustration of our proposed video polyp detection framework, YONA. It first
aligns the foreground channel patterns between the anchor and reference frame in (a).
Then it extracts polyp context guided by dynamic field in (b). Meanwhile, YONA
enhances the discrimination ability via contrastive learning in (c) during training. The
final output of (b) is used to predict the bounding box of the current frame.

2.1 Foreground Temporal Alignment

Since the camera moves at a high speed, the changes in the frame are very
drastic for both foreground and background targets. As a result, multi-frame
(reference>3) fusion may easily incorporate more noise features into the aggre-
gation features. On the other hand, the occluded or distorted foreground context
may also influence the quality of aggregation. Thus we propose to conduct tem-
poral alignment between adjacent features by leveraging the foreground context
of only one adjacent reference frame. It is designed to align the certain channel’s
activation pattern of anchor feature to its preceding reference feature. Specifi-
cally, given the intermediate features F a, F r and reference binary map Mr, we
first pooling F r to 1D channel pattern fr by the binary map on the spatial
dimension (RN×C×H×W → RN×C×1) and normalize it to [0, 1]:

fr = norm [Pooling(F r)]

Pooling(F r) = sumHW [F r(x, y)]/sum[Mr(x, y)] if Mr(x, y) = 1
(1)

Then, the foreground temporal alignment is implemented by channel attention
mechanism, where the attention maps are computed by weighted dot-product.
We obtain the enhanced anchor feature by adding the attention maps with the
original anchor feature through skip connection to keep the gradient flow.

F̃ = [αfr ⊙ F a(x, y)]⊕ F a if Mr(x, y) = 1 (2)

where α is the adaptive weight by similarity measuring.
At the training stage, the ground truth boxes of the reference frame are used

to generate the binary map Mr. During the inference stage, we conduct FTA
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only if the validated bounding box of the reference frame exists, where "val-
idated" denotes the confidence scores of detected boxes are greater than 0.6.
Otherwise, we will skip this process and feed the original inputs to the next
module.

Adaptive Re-weighting by Similarity Measuring As discussed above, due
to video jitters, adjacent frames may change rapidly at the temporal level, and di-
rectly fusing the reference feature will introduce noisy information and misguide
the training. Thus we designed an adaptive re-weighting method by measuring
the feature similarity, where the weight indicates the importance of the refer-
ence feature to the anchor feature. Specifically, if the foreground feature of the
reference is close to the anchor, it is assigned a larger weight at all channels.
Otherwise, a smaller weight is assigned. For efficiency, we use the cosine similar-
ity metric [8] to measure the similarity, where fa is the 1D channel pattern of
F a computed with Eq. 1:

α = exp

(
fr · fa

|fr||fa|

)
(3)

2.2 Background Dynamic Alignment

The traditional convolutional-based object detector can detect objects well when
the background is stable. However, once it receives obvious interference, such as
light or shadow, the background changes may cause the degradation of spa-
tial correlation and lead to many false-positive predictions. Motivated by the
inter-frame difference method [20], we first mine the dynamic field of adjacent
background contents, then consult to deformable convolution [3] to learn the
inherent geometric transformations according to the intensity of the dynamic
field. In practice, given the enhanced anchor feature F̃ from FTA and reference
feature F r, the inter-frame difference is defined as the element-wise subtraction
of enhanced anchor and reference feature. Then a 1 × 1 convolution is applied
on the difference to generate dynamic field D, which encodes all spatial dynamic
changes between adjacent frames.

D = Conv1×1(F̃ − F r) (4)

Finally, a 3× 3 deformable convolution embeds the spatial dynamic changes of
D on the enhanced anchor feature F̃ .

F∗ = DeConv3×3(F̃ ,D) (5)

where D works as the deformable offset and F ∗ is the final aligned anchor feature.
Then the enhanced anchor feature is fed into three detection heads composed of
a 3 × 3 Conv and a 1 × 1 Conv to produce center, size, and offset features for
detection loss:

Ldetection = Lcenter
focal + λsizeLsize

L1 + λoffLoffset
L1 (6)

where Lfocal is focal loss and LL1 is L1 loss.
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2.3 Cross-frame Box-assisted Contrastive Learning

Typically, in colonoscopy videos, some concealed polyps appear very similar to
the intestine wall in color and texture. Thus, an advanced training strategy is re-
quired to distinguish such homogeneity. Inspired by recent studies on supervised
contrastive learning [18], we select the foreground and background region on both
two frames guided by ground truth boxes to conduct contrastive learning. In
practice, Given a batch of intermediate feature maps F a, F r ∈ RN×T×C×H×W

and corresponding binary maps Ma,Mr ∈ RN×T×H×W , we first concatenate
the anchor and reference at the batch-wise level as F̂ ∈ RNT×C×H×W and
M̂ ∈ RNT×H×W to exploit the cross-frame information. Then we extract the
foreground and background channel patterns of cross-frame feature F̂ using the
Eq. 1 base on M̂(x, y) = 1 and M̂(x, y) = 0, respectively. After that, for each
foreground channel pattern, which is the "query", we randomly select another
different foreground feature as the "positive", while all the background features
in the same batch are taken as the "negatives". Finally, we calculate the one-step
contrastive loss by InfoNCE [18]:

LNCE
j = −log

exp(qj ·i+/τ)
exp(qj ·i+/τ)+

∑
i−∈Nj

exp(qj ·i−/τ)
(7)

where qj ∈ RC , j = 0, ..., NT is the query feature, i+ ∈ RC and i− ∈ RNT×C are
positives and negatives. Nj denote embedding collections of the negatives. We
repeat this process until every foreground channel pattern is selected and sum
all steps as the final contrastive loss:

Lcontrast =
1

NT

NT∑

j=1

LNCE
j (8)

3 Experiments

We evaluate the proposed method on three public video polyp detection bench-
marks: SUN Colonoscopy Video Database [10,7] (train set: 19,544 frames, test
set: 12,522 frames), LDPolypVideo [9] (train set: 20,942 frames, test set: 12,933
frames), and CVC-VideoClinicDB [1] (train set: 7995 frames, test set: 2030
frames). For the fairness of the experiments, we keep the same dataset settings
for YONA and all other methods.

We use ResNet-50 [6] as our backbone and CenterNet [25] as our base detec-
tor. Following the same setting in CenterNet, we set λsize = 0.1 and λoff = 1.
We set λcontrast = 0.3 by ablation study. Detailed results are listed in the supple-
ment. We randomly crop and resize the images to 512×512 and normalize them
using ImageNet settings. Random rotation and flip with probability p = 0.5 are
used for data augmentation. We set the batch size N = 32. Our model is trained
using the Adam optimizer with a weight decay of 5 × 10−4 for 64 epochs. The
initial learning rate is set to 10−4 and gradually decays to 10−5 with cosine
annealing. All models are trained with PyTorch [11] framework. The training
setting of other competitors follows the best settings given in their paper.
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Table 1. Performance comparison with other image/video-based detection models. P,
R, and F1 denote the precision, recall, and F1-score. †: results from the original paper
with the same data division. The best score is marked as red, while the second best
score is marked as blue.

Methods SUN Database LDPolypVideo CVC-VideoClinic FPSP R F1 P R F1 P R F1
Faster-RCNN [13] 77.2 69.6 73.2 68.8 46.7 55.6 84.6 98.2 90.9 44.7

FCOS [17] 75.7 64.1 69.4 65.1 46.0 53.9 92.1 74.1 82.1 42.0
CenterNet [25] 74.6 65.4 69.7 70.6 43.8 54.0 92.0 80.5 85.9 51.5

Sparse-RCNN [15] 75.5 73.7 74.6 71.6 47.9 57.4 85.1 96.4 90.4 40.0
DINO [21] 81.5 72.3 76.6 68.3 51.1 58.4 93.1 89.3 91.2 23.0
FGFA [26] 78.9 70.4 74.4 68.8 48.9 57.2 94.5 89.2 91.7 1.8

OptCNN† [23] - - - - - - 84.6 97.3 90.5 -
AIDPT† [22] - - - - - - 90.6 84.5 87.5 -

MEGA [2] 80.4 71.6 75.7 69.2 50.1 58.1 91.6 87.7 89.6 8.1
TransVOD [24] 79.3 69.6 74.1 69.2 49.2 57.5 92.1 91.4 91.7 8.4

STFT [19] 81.5 72.4 76.7 72.1 50.4 59.3 91.9 92.0 92.0 12.5
Ours-YONA 83.3 74.9 78.9 75.4 53.1 62.3 92.8 93.8 93.3 46.3

3.1 Quantitative and Qualitative Comparison

Quantitative Comparison The comparison results are shown in Tab. 1. Fol-
lowing the standard of [1], the Precision, Recall, and F1-scores are used for eval-
uation. Firstly, compared with the CenterNet baseline, our YONA with three
novel designs significantly improved the F1 score by 9.2%, 8.3%, and 7.4% on
three benchmarks, demonstrating the effectiveness of the model design. Besides,
YONA achieves the best trade-off between accuracy and speed compared with
all other image-based SOTAs across all datasets. Second, for video-based com-
petitors, previous video object detectors with multiple frame collaborations lack
the ability for accurate detection on challenging datasets. Specifically, YONA
surpasses the second-best STFT [19] by 2.2%, 3.0%, and 1.3% on F1 score on
three datasets and 33.8 on FPS. All the results confirm the superiority of our
proposed framework for accurate and fast video polyp detection.
Qualitative Comparison Fig. 3 visualizes the qualitative results of YONA
with other competitors [25,19]. Thanks to this one-adjacent-frame framework,
our YONA can not only prevent the false positive caused by part occlusion (1st
and 2nd clips) but also capture useful information under severe image quality
(2nd clip). Moreover, our YONA shows robust performance even for challenging
scenarios like concealed polyps (3rd clip).

3.2 Ablation Study

We investigated the effectiveness of each component in YONA on the SUN
database, as shown in Tab. 2. It can be observed that all the modules are nec-
essary for precise detection compared with the baseline results. Due to the large
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Fig. 3. Qualitative results of polyp detection on some video clips. The yellow, green,
and red denote the ground truth, true positive, and false positive, respectively

Table 2. Ablation studies of YONA under different settings. Ada means the adaptive
re-weighting by similarity measuring; CW denotes the channel-wise attention [4]; CA
denotes the channel-aware attention [19].

FTA CW [4] CA [19] Ada BDA CBCL Precision Recall F1 FPS
74.6 65.4 69.7 51.5

✓ 74.0 63.9 68.6↓1.1 49.7
✓ ✓ 80.9 70.1 75.1↑5.4 48.5

✓ ✓ 78.0 65.2 71.1↑1.4 48.3
✓ ✓ 80.4 68.4 73.9↑4.2 45.2

✓ ✓ ✓ 82.0 72.2 76.8↑7.1 46.3
✓ ✓ ✓ ✓ 83.3 74.9 78.9↑9.2 46.3

variance of colonoscopy image content, the F1 score slightly decreases if directly
adding FTA without the adaptive re-weighting strategy. Adding the adaptive
weight greatly improves the F1 score by 5.4. Moreover, we use other two main-
stream channel attention mechanisms to replace our proposed FTA for compari-
son. Compared with them, our FTA with adaptive weighting achieves the largest
gain over the baseline and higher FPS. Overall, by combining all the proposed
methods, our model can achieve new state-of-the-art performance.

4 Conclusion

Video polyp detection is a currently challenging task due to the fast-moving
property of colonoscopy video. In this paper, We proposed the YONA frame-
work that requires only one adjacent reference frame for accurate and fast video
polyp detection. To address the problem of fast-moving polyps, we introduced
the foreground temporal alignment module, which explicitly aligns the channel
patterns of two frames according to their foreground similarity. For the complex
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background content, we designed the background dynamic alignment module to
mitigate the large variances by exploiting the inter-frame difference. Meanwhile,
we employed a cross-frame box-assisted contrastive learning module to enhance
the polyp and background discrimination based on box annotations. Extensive
experiment results confirmed the effectiveness of our method, demonstrating the
potential for practical use in real clinical applications.
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Table 1. Impact of λcontrast on F1-score.

λcontrast SUN Database LDPolypVideo CVC-VideoClinic

0.1 78 61.7 92.6
0.2 78.5 62.3 93.4
0.3 78.9 62.3 93.4
0.4 78.6 62.1 93.3
0.5 78.2 62 93.1
0.6 78 61.8 93
0.7 78.1 61.5 92.6
0.8 78.3 61.2 92.4
0.9 77.9 61.6 92.6
1 77.7 61.7 92.8

Table 2. Impact of the reference frame number on accuracy (F1-score) and inference
speed (FPS).

Dataset # Reference Frames
0 1* 2 4 6 8 10

SUN Database 69.7 78.9 78.1 76.4 75.6 73.7 73.0
LDPolypVideo 54.0 62.3 61.1 59.7 56.6 55.1 54.5

CVC-VideoClinic 85.9 93.3 92.6 91.2 89.8 87.5 86.4
FPS 51.5 46.3 33.6 26.5 18.9 13.4 10.8

⋆ Equal contribution
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Fig. 1. Illustration of YONA framework with multiple reference frames. For simplicity,
here we take two reference frames as an example. It’s noted that the design of multi-
frame architecture is not the main concern and contribution of our work. Thus, we just
adopt the naive average fusion strategy.

Image GT YONA YONA STFTSTFTCenternet Centernet

Prediction Class Activation Mapping

Fig. 2. Illustration of attention regions and predictions of different methods on two
adjacent frames. Image-level detectors lack the ability to extract useful context infor-
mation on blurred images, leading to false positive results. Thanks to the proposed
foreground and background alignments, our YONA can fuse the context information
from the adjacent frame and obtain valid predictions.


