Skip to main content

Acute Ischemic Stroke Onset Time Classification with Dynamic Convolution and Perfusion Maps Fusion

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14224))

  • 3349 Accesses

Abstract

In treating acute ischemic stroke (AIS), determining the time since stroke onset (TSS) is crucial. Computed tomography perfusion (CTP) is vital for determining TSS by providing sufficient cerebral blood flow information. However, the CTP has small samples and high dimensions. In addition, the CTP is multi-map data, which has heterogeneity and complementarity. To address these issues, this paper demonstrates a classification model using CTP to classify the TSS of AIS patients. Firstly, we use dynamic convolution to improve model representation without increasing network complexity. Secondly, we use multi-scale feature fusion to fuse the local correlation of low-order features and use a transformer to fuse the global correlation of higher-order features. Finally, multi-head pooling attention is used to learn the feature information further and obtain as much important information as possible. We use a five-fold cross-validation strategy to verify the effectiveness of our method on the private dataset from a local hospital. The experimental results show that our proposed method achieves at least 5% higher accuracy than other methods in TTS classification task.

P. Yang and Y. Zhang−These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phipps, M.S., Cronin, C.A.: Management of acute ischemic stroke. RMD Open 368, l6983 (2020)

    Google Scholar 

  2. Paciaroni, M., Caso, V., Agnelli, G.: The concept of ischemic penumbra in acute stroke and therapeutic opportunities. Eur. Neurol. 61(6), 321–330 (2009)

    Article  Google Scholar 

  3. Peter-Derex, L., Derex, L.: Wake-up stroke: from pathophysiology to management. Sleep Med. Rev. 48, 101212 (2019)

    Article  Google Scholar 

  4. Konstas, A., Goldmakher, G., Lee, T.-Y., Lev, M.: Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: theoretic basis. Am. J. Neuroradiol. 30(4), 662–668 (2009)

    Article  Google Scholar 

  5. Ho, K.C., Speier, W., El-Saden, S., Arnold, C.W.: Classifying acute ischemic stroke onset time using deep imaging features. In: AMIA Annual Symposium Proceedings, pp. 892–901 (2017)

    Google Scholar 

  6. Ho, K.C., Speier, W., Zhang, H., Scalzo, F., El-Saden, S., Arnold, C.W.: A machine learning approach for classifying ischemic stroke onset time from imaging. IEEE Trans. Med. Imaging 38(7), 1666–1676 (2019)

    Article  Google Scholar 

  7. Lee, H., et al.: Machine learning approach to identify stroke within 4.5 hours. Stroke 51(3), 860–866 (2020)

    Google Scholar 

  8. Jiang, L., et al.: Development and external validation of a stability machine learning model to identify wake-up stroke onset time from MRI. Eur. Radiol. 32(6), 3661–3669 (2022)

    Article  Google Scholar 

  9. Zhang, H., et al.: Intra-domain task-adaptive transfer learning to determine acute ischemic stroke onset time. Comput. Med. Imaging Graph. 90, 101926 (2021)

    Article  Google Scholar 

  10. Polson, J.S., et al.: Identifying acute ischemic stroke patients within the thrombolytic treatment window using deep learning. J. Neuroimaging 32(6), 1153–1160 (2022)

    Article  Google Scholar 

  11. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11030–11039 (2020)

    Google Scholar 

  12. Rosenblatt, F.: The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory (1957)

    Google Scholar 

  13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  14. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems. Vol. 30 (2017)

    Google Scholar 

  15. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  16. Qi, D., Su, L., Song, J., Cui, E., Bharti, T., Sacheti, A.: ImageBERT: cross-modal pre-training with large-scale weak-supervised image-text data. arXiv preprint arXiv:2001.07966 (2020)

  17. Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., Sutskever, I.: Generative pretraining from pixels. In: International Conference on Machine Learning, pp. 1691–1703. PMLR (2020)

    Google Scholar 

  18. Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: VideoBERT: a joint model for video and language representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7464–7473 (2019)

    Google Scholar 

  19. Chitta, K., Prakash, A., Jaeger, B., Yu, Z., Renz, K., Geiger, A.: TransFuser: Imitation with transformer-based sensor fusion for autonomous driving. IEEE Trans. Pattern Anal. Mach. Intell. (2022). https://doi.org/10.1109/TPAMI.2022.3200245

    Article  Google Scholar 

  20. Dai, Z., Liu, H., Le, Q.V., Tan, M.: CoatNet: marrying convolution and attention for all data sizes. Adv. Neural. Inf. Process. Syst. 34, 3965–3977 (2021)

    Google Scholar 

  21. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  22. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  23. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: Multi-fiber networks for video recognition. In: Proceedings of the European Conference on Computer Vision, pp. 352–367 (2018)

    Google Scholar 

  24. Sun, L., Zhao, G., Zheng, Y., Wu, Z.: Spectral–spatial feature tokenization transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2022)

    Article  Google Scholar 

  25. Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6202–6211 (2019)

    Google Scholar 

  26. Zhu, H., Jiang, L., Zhang, H., Luo, L., Chen, Y., Chen, Y.: An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging. NeuroImage: Clin. 31, 102744 (2021)

    Google Scholar 

  27. Polson, J.S., et al.: Deep learning approaches to identify patients within the thrombolytic treatment window (2022).https://doi.org/10.1111/jon.13043

  28. Zhang, Y.-Q., et al.: MRI radiomic features-based machine learning approach to classify ischemic stroke onset time. J. Neurol. 269(1), 350–360 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported National Natural Science Foundation of China (Nos. 62201360, 62101338, 61871274, and U1902209), National Natural Science Foundation of Guangdong Province (2019A1515111205), Guangdong Basic and Applied Basic Research (2021A1515110746), Shenzhen Key Basic Research Project (KCXFZ20201221173213036, JCYJ20220818095809021, SGDX202011030958020–07, JCYJ201908081556188–06, and JCYJ20190808145011259) Capital’s Funds for Health Improvement and Research (No. 2022–1-2031), Beijing Hospitals Authority’s Ascent Plan (No. DFL20220303), and Beijing Key Specialists in Major Epidemic Prevention and Control.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Yang or Baiying Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, P., Zhang, Y., Lei, H., Bian, Y., Yang, Q., Lei, B. (2023). Acute Ischemic Stroke Onset Time Classification with Dynamic Convolution and Perfusion Maps Fusion. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics