Skip to main content

Multimodal Deep Fusion in Hyperbolic Space for Mild Cognitive Impairment Study

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14224))

Abstract

Multimodal fusion of different types of neural image data offers an invaluable opportunity to leverage complementary cross-modal information and has greatly advanced our understanding of mild cognitive impairment (MCI), a precursor to Alzheimer’s disease (AD). Current multi-modal fusion methods assume that both brain’s natural geometry and the related feature embeddings are in Euclidean space. However, recent studies have suggested that non-Euclidean hyperbolic space may provide a more accurate interpretation of brain connectomes than Euclidean space. In light of these findings, we propose a novel graph-based hyperbolic deep model with a learnable topology to integrate the individual structural network with functional information in hyperbolic space for the MCI/NC (normal control) classification task. We comprehensively compared the classification performance of the proposed model with state-of-the-art methods and analyzed the feature representation in hyperbolic space and its Euclidean counterparts. The results demonstrate the superiority of the proposed model in both feature representation and classification performance, highlighting the advantages of using hyperbolic space for multimodal fusion in the study of brain diseases. (Code is available here (https://github.com/nasyxx/MDF-HS).)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allard, A., Serrano, M.Á.: Navigable maps of structural brain networks across species. PLoS Comput. Biol. 16(2), e1007584 (2020)

    Article  Google Scholar 

  2. Association, A.: 2019 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 15(3), 321–387 (2019)

    Article  Google Scholar 

  3. Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: International Conference on Machine Learning, pp. 486–496. PMLR (2020)

    Google Scholar 

  4. Benedetti, R., Petronio, C.: Lectures on hyperbolic geometry. Springer Science & Business Media (1992)

    Google Scholar 

  5. Bonnabel, S.: Stochastic gradient descent on Riemannian manifolds. IEEE Trans. Autom. Control 58(9), 2217–2229 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chamberlain, B.P., Clough, J., Deisenroth, M.P.: Neural embeddings of graphs in hyperbolic space. arXiv preprint arXiv:1705.10359 (2017)

  7. Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. Adv. Neural Inform. Process. Syst. 32 (2019)

    Google Scholar 

  8. Dai, Z., et al.: Disrupted structural and functional brain net-works in Alzheimer’s disease. Neurobiol. Aging 75, 71–82 (2019)

    Article  Google Scholar 

  9. Destrieux, C., Fischl, B., Dale, A., Halgren, E.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1), 1–15 (2010)

    Article  Google Scholar 

  10. Fang, X., Liu, Z., Xu, M.: Ensemble of deep convolutional neural networks based multi-modality images for Alzheimer’s disease diagnosis. IET Image Proc. 14(2), 318–326 (2020)

    Article  Google Scholar 

  11. Ganea, O., Bécigneul, G., Hofmann, T.: Hyperbolic neural networks. Adv. Neural Inform. Process. Syst. 31 (2018)

    Google Scholar 

  12. Greene, R.E.: S. gallot, d. hulin and j. lafontaine, riemannian geometry (1989)

    Google Scholar 

  13. Gromov, M.: Hyperbolic groups. In: Gersten, S.M., et al. (eds.) Essays in Group Theory, pp. 75–263. Springer, New York, NY (1987). https://doi.org/10.1007/978-1-4613-9586-7_3

    Chapter  Google Scholar 

  14. Li, Y., Liu, J., Tang, Z., Lei, B.: Deep spatial-temporal feature fusion from adaptive dynamic functional connectivity for mci identification. IEEE Trans. Med. Imaging 39(9), 2818–2830 (2020)

    Article  Google Scholar 

  15. Liu, Q., Nickel, M., Kiela, D.: Hyperbolic graph neural networks. Adv. Neural Inform. Process. Syst. 32 (2019)

    Google Scholar 

  16. Mathieu, E., Le Lan, C., Maddison, C.J., Tomioka, R., Teh, Y.W.: Continuous hierarchical representations with poincaré variational auto-encoders. Adv. Neural Informa. Process. Syst. 32 (2019)

    Google Scholar 

  17. Muscoloni, A., Thomas, J.M., Ciucci, S., Bianconi, G., Cannistraci, C.V.: Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8(1), 1615 (2017)

    Article  Google Scholar 

  18. Newman, M.E.: Power laws, pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)

    Article  Google Scholar 

  19. Peng, W., Varanka, T., Mostafa, A., Shi, H., Zhao, G.: Hyperbolic deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 10023–10044 (2021)

    Article  Google Scholar 

  20. Shi, Y., et al.: Asmfs: Adaptive-similarity-based multi-modality feature selection for classification of Alzheimer’s disease. Pattern Recogn. 126, 108566 (2022)

    Article  Google Scholar 

  21. Shimizu, R., Mukuta, Y., Harada, T.: Hyperbolic neural networks++. arXiv preprint arXiv:2006.08210 (2020)

  22. Zhang, J., Zheng, B., Gao, A., Feng, X., Liang, D., Long, X.: A 3D densely connected convolution neural net-work with connection-wise attention mechanism for Alzheimer’s disease classification. Magn. Reson. Imaging 78, 119–126 (2021)

    Article  Google Scholar 

  23. Zhang, L., et al.: Roimaging Initiative, A.D.N., et al.: Deep fusion of brain structure-function in mild cognitive impairment. Medical Image Anal. 72, 102082 (2021)

    Google Scholar 

  24. Zhang, L., Wang, L., Zhu, D.: Jointly analyzing Alzheimer’s disease related structure-function using deep cross-model attention net-work. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 563–567. IEEE (2020)

    Google Scholar 

  25. Zhang, L., Wang, L., Zhu, D.: Recovering brain structural connectivity from functional connectivity via multi-GCN based generative adversarial network. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII, pp. 53–61. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_6

    Chapter  Google Scholar 

  26. Zhang, L., Wang, L., Zhu, D., Initiative, A.D.N., et al.: Predicting brain structural network using functional connectivity. Med. Image Anal. 79, 102463 (2022)

    Article  Google Scholar 

  27. Zhang, L., Zaman, A., Wang, L., Yan, J., Zhu, D.: A cascaded multi-modality analysis in mild cognitive impairment. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 557–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_64

    Chapter  Google Scholar 

  28. Zheng, M., Allard, A., Hagmann, P., Alemán-Gómez, Y., Serrano, M.Á.: Geometric renormalization unravels self-similarity of the multiscale human connectome. Proc. Natl. Acad. Sci. 117(33), 20244–20253 (2020)

    Article  Google Scholar 

  29. Zhou, P., et al.: Use of a sparse-response deep belief network and extreme learning machine to discriminate Alzheimer’s dis-ease, mild cognitive impairment, and normal controls based on amyloid pet/mri images. Front. Med. 7, 621204 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by National Institutes of Health (R01AG075582 and RF1NS128534).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junzhou Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 166 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Na, S., Liu, T., Zhu, D., Huang, J. (2023). Multimodal Deep Fusion in Hyperbolic Space for Mild Cognitive Impairment Study. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics