Skip to main content

Flexible Unfolding of Circular Structures for Rendering Textbook-Style Cerebrovascular Maps

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Comprehensive, contiguous visualizations of the main cerebral arteries and the surrounding parenchyma offer considerable potential for improving diagnostic workflows in cerebrovascular disease, e.g., for fast assessment of vascular topology and lumen in stroke patients. Unfolding the brain vasculature into a 2D overview is, however, infeasible using common Curved Planar Reformation (CPR) due to the circular structure of the Circle of Willis (CoW) and the spatial configuration of the vessels typically rendering them unsuitable for mapping onto simple geometric primitives. We propose CeVasMap, extending the As-Rigid-As-Possible (ARAP) deformation by a smart initialization of the required mesh to map the CoW as well as a merging of neighboring vessels depending on the resulting degree of distortion. Otherwise, vessels are unfolded and attached individually, creating a textbook-style overview image. We provide an extensive distortion analysis, comparing the vector fields of individual and merged unfoldings of each vessel to their CPR results. In addition to enabling unfolding of circular structures, our method is on par in terms of incurred distortions to optimally oriented CPRs for individual vessels and comparable to unfavorable CPR orientations when merging the complete CoW with a median distortion of 65 \(\upmu \)m/mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balasubramanian, M., Polimeni, J.R., Schwartz, E.L.: Near-isometric flattening of brain surfaces. NeuroImage 51(2), 694–703 (2010). https://doi.org/10.1016/j.neuroimage.2010.02.008

    Article  Google Scholar 

  2. Gunnal, S.A., Farooqui, M.S., Wabale, R.N.: Anatomical variability of the posterior communicating artery. Asian J. Neurosurg. 13, 363 (2018). https://doi.org/10.4103/AJNS.AJNS_152_16

    Article  Google Scholar 

  3. Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., Groller, E.: CPR - curved planar reformation. In: IEEE Visualization, 2002 (VIS 2002), pp. 37–44 (2002). https://doi.org/10.1109/VISUAL.2002.1183754

  4. Kreiser, J., Meuschke, M., Mistelbauer, G., Preim, B., Ropinski, T.: A survey of flattening-based medical visualization techniques. Comput. Graph. Forum 37, 597–624 (2018). https://doi.org/10.1111/cgf.13445

    Article  Google Scholar 

  5. Kretschmer, J., Soza, G., Tietjen, C., Suehling, M., Preim, B., Stamminger, M.: ADR - anatomy-driven reformation. IEEE Trans. Visual. Comput. Graph. 20(12), 2496–2505 (2014). https://doi.org/10.1109/TVCG.2014.2346405

    Article  Google Scholar 

  6. Liu, L., Zhang, L., Xu, Y., Gotsman, C., Gortler, S.J.: A local/global approach to mesh parameterization. Comput. Graph. Forum 27, 1495–1504 (2008). https://doi.org/10.1111/j.1467-8659.2008.01290.x

    Article  Google Scholar 

  7. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 362–371 (2002). https://doi.org/10.1145/566654.566590

    Article  Google Scholar 

  8. Martinke, H., et al.: Bone fracture and lesion assessment using shape-adaptive unfolding. In: Eurographics Workshop on Visual Computing for Biology and Medicine. The Eurographics Association (2017). https://doi.org/10.2312/vcbm.20171249

  9. Miao, H., Mistelbauer, G., Nasel, C., Gröller, E.: Visual quantification of the circle of Willis: an automated identification and standardized representation. Comput. Graph. Forum 36(6), 393–404 (2017). https://doi.org/10.1111/cgf.12988

    Article  Google Scholar 

  10. Neugebauer, M., Gasteiger, R., Beuing, O., Diehl, V., Skalej, M., Preim, B.: Map displays for the analysis of scalar data on cerebral aneurysm surfaces. Comput. Graph. Forum 28(3), 895–902 (2009). https://doi.org/10.1111/j.1467-8659.2009.01459.x

    Article  Google Scholar 

  11. Rist, L., Taubmann, O., Thamm, F., Ditt, H., Sühling, M., Maier, A.: Bifurcation matching for consistent cerebral vessel labeling in CTA of stroke patients. Int. J. Comput. Assist. Radiol. Surg. 18(3), 509–516 (2022). https://doi.org/10.1007/s11548-022-02750-9

    Article  Google Scholar 

  12. Shen, M., et al.: Automatic cerebral artery system labeling using registration and key points tracking. In: Knowledge Science, Engineering and Management, pp. 355–367 (2020). https://doi.org/10.1007/978-3-030-55130-8_31

  13. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP 2007), pp. 109–116. Eurographics Association, Goslar, DEU (2007). https://doi.org/10.2312/SGP/SGP07/109-116

  14. Thamm, F., et al.: An algorithm for the labeling and interactive visualization of the cerebrovascular system of ischemic strokes. Biomed. Phys. Eng. Exp. 8(6) (2022). https://doi.org/10.1088/2057-1976/ac9415

  15. Zhu, L., Haker, S., Tannenbaum, A.: Flattening maps for the visualization of multibranched vessels. IEEE Trans. Med. Imaging 24(2), 191–198 (2005). https://doi.org/10.1109/TMI.2004.839368

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge our collaborators at the University Hospital Schleswig-Holstein in Lübeck for providing the data used in this work. It was collected in a retrospective study which received Institutional Review Board approval prior to starting. The need for informed consent was waived.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonhard Rist .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 505 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rist, L., Taubmann, O., Ditt, H., Sühling, M., Maier, A. (2023). Flexible Unfolding of Circular Structures for Rendering Textbook-Style Cerebrovascular Maps. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics