Skip to main content

Convolving Directed Graph Edges via Hodge Laplacian for Brain Network Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14224))

  • 3484 Accesses

Abstract

A brain network, viewed as a graph wiring different regions of interest (ROIs) in the brain, has been widely used to investigate brain dysfunction with various graph neural networks (GNNs). However, existing GNNs are built upon graph convolution that transforms measurements on the nodes, where ROI-wise features are not always guaranteed for brain networks. Therefore, the majority of existing graph analysis methods that rely on node features are inapplicable for network analysis unless a proxy such as node degree is provided. Moreover, the complex neurological interactions across different brain regions cannot be directly expressed in a simple node-to-node (i.e., 0-simplex) representation. In this paper, we propose a novel method, Hodge-Graph Neural Network (Hodge-GNN), that allows the GNN to directly derive desirable representations of graph edges and capture complex edge-wise topological features spatially via the Hodge Laplacian. Specifically, representing a graph as a simplicial complex holds a significant advantage over conventional methods that extract higher-order connectivity of a graph through hierarchical convolution in the spatial domain or graph transformation. The superiority of our method is validated in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, in comparison to benchmarking GNNs as well as state-of-the-art graph classification models.

J. Park and Y. Hwang—contributed equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anand, D.V., Chung, M.K.: Hodge-laplacian of brain networks and its application to modeling cycles. arXiv preprint arXiv:2110.14599 (2021)

  2. Catani, M., Ffytche, D.H.: The rises and falls of disconnection syndromes. Brain 128(10), 2224–2239 (2005)

    Article  Google Scholar 

  3. Cheyuo, C., et al.: Connectomic neuromodulation for Alzheimer’s disease: a systematic review and meta-analysis of invasive and non-invasive techniques. Transl. Psychiatry 12(1), 490 (2022)

    Article  Google Scholar 

  4. Choi, I., Wu, G., Kim, W.H.: How much to aggregate: learning adaptive node-wise scales on graphs for brain networks. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I, pp. 376–385. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_36

    Chapter  Google Scholar 

  5. Cui, H., et al.: BrainGB: a benchmark for brain network analysis with graph neural networks. IEEE Trans. Med. Imaging 42(2), 493–506 (2023)

    Article  Google Scholar 

  6. Delbeuck, X., Van der Linden, M., Collette, F.: Alzheimer’disease as a disconnection syndrome? Neuropsychol. Rev. 13, 79–92 (2003)

    Article  Google Scholar 

  7. Destrieux, C., et al.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1), 1–15 (2010)

    Article  Google Scholar 

  8. Edelsbrunner, H., Harer, J.L.: Computational topology: an introduction. American Mathematical Society (2022)

    Google Scholar 

  9. Farahani, F.V., et al.: Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. Front. Neurosci. 13, 585 (2019)

    Google Scholar 

  10. Filippi, M., et al.: Changes in functional and structural brain connectome along the Alzheimer’s disease continuum. Mol. Psychiatry 25(1), 230–239 (2020)

    Article  Google Scholar 

  11. Galton, C.J., Patterson, K., et al.: Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia 57(2), 216–225 (2001)

    Google Scholar 

  12. Gan, C., O’Sullivan, M., Metzler-Baddeley, C., et al.: Association of imaging abnormalities of the subcallosal septal area with Alzheimer’s disease and mild cognitive impairment. Clin. Radiol. 72(11), 915–922 (2017)

    Article  Google Scholar 

  13. Guo, Z., et al.: Disrupted topological organization of functional brain networks in Alzheimer’s disease patients with depressive symptoms. BMC Psychiatry 22(1), 1–10 (2022)

    Article  Google Scholar 

  14. Huang, J., Chung, M.K., Qiu, A.: Heterogeneous Graph Convolutional Neural Network via Hodge-Laplacian for Brain Functional Data. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds.) Information Processing in Medical Imaging: 28th International Conference, IPMI 2023, San Carlos de Bariloche, Argentina, June 18–23, 2023, Proceedings, pp. 278–290. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34048-2_22

    Chapter  Google Scholar 

  15. Jiang, X., Ji, P., Li, S.: CensNet: convolution with edge-node switching in graph neural networks. In: IJCAI, pp. 2656–2662 (2019)

    Google Scholar 

  16. Johnson, J.K., et al.: Clinical and pathological evidence for a frontal variant of Alzheimer disease. Arch. Neurol. 56(10), 1233–1239 (10 1999)

    Google Scholar 

  17. Lehéricy, S., Hirsch, E.C., Hersh, L.B., et al.: Cholinergic neuronal loss in the globus pallidus of Alzheimer disease patients. Neurosci. Lett. 123(2), 152–155 (1991)

    Article  Google Scholar 

  18. Li, X., et al.: BrainGNN: interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  19. Lim, L.H.: Hodge laplacians on graphs. arXiv preprint arXiv:1507.05379 (2015)

  20. Lu, J., et al.: Functional connectivity between the resting-state olfactory network and the hippocampus in Alzheimer’s disease. Brain Sci. 9(12), 338 (2019)

    Article  Google Scholar 

  21. Ma, X., Wu, G., Hwang, S.J., Kim, W.H.: Learning multi-resolution graph edge embedding for discovering brain network dysfunction in neurological disorders. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) Information Processing in Medical Imaging: 27th International Conference, IPMI 2021, Virtual Event, June 28–June 30, 2021, Proceedings, pp. 253–266. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_20

    Chapter  Google Scholar 

  22. McDuff, T., Sumi, S.: Subcortical degeneration in Alzheimer’s disease. Neurology 35(1), 123–123 (1985)

    Article  Google Scholar 

  23. Meng, Z., Xia, K.: Persistent spectral-based machine learning (PerSpect ML) for protein-ligand binding affinity prediction. Sci. Adv. 7(19), eabc5329 (2021)

    Google Scholar 

  24. Morris, C., Lipman, Y., Maron, H., et al.: Weisfeiler and leman go machine learning: the story so far. arXiv preprint arXiv:2112.09992 (2021)

  25. Morris, C., Ritzert, M., Fey, M., et al.: Weisfeiler and leman go neural: Higher-order graph neural networks. In: AAAI, vol.33, pp.4602–4609 (2019)

    Google Scholar 

  26. Persson, K., Bohbot, V., Bogdanovic, N., et al.: Finding of increased caudate nucleus in patients with Alzheimer’s disease. Acta Neurologica Scandinavica 137(2), 224–232 (2018)

    Article  Google Scholar 

  27. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-cam: Why did you say that? visual explanations from deep networks via gradient-based localization. CoRR abs/1610.02391 (2016)

    Google Scholar 

  28. Tentolouris-Piperas, V., Ryan, N.S., Thomas, D.L., Kinnunen, K.M.: Brain imaging evidence of early involvement of subcortical regions in familial and sporadic Alzheimer’s disease. Brain Res. 1655, 23–32 (2017)

    Article  Google Scholar 

  29. Vogt, L.K., Hyman, B., Van Hoesen, G., Damasio, A.: Pathological alterations in the amygdala in Alzheimer’s disease. Neuroscience 37(2), 377–385 (1990)

    Article  Google Scholar 

  30. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38(5), 1–12 (2019)

    Article  Google Scholar 

  31. Welling, M., Kipf, T.N.: Semi-supervised classification with graph convolutional networks. In: ICLR (2016)

    Google Scholar 

  32. West, M., Coleman, P., Flood, D., Troncoso, J.: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. The Lancet 344(8925), 769–772 (1994), originally published as Volume 2, Issue 8925

    Google Scholar 

  33. Zhou, B., Khosla, A., Lapedriza, A., et al.: Learning deep features for discriminative localization. In: CVPR. pp. 2921–2929 (2016)

    Google Scholar 

Download references

Acknowledgement

This research was supported by NRF-2022R1A2C2092336 (50%), IITP-2022-0-00290 (20%), IITP-2019-0-01906 (AI Graduate Program at POSTECH, 10%) funded by MSIT, HU22C0171 (10%) and HU22C0168 (10%) funded by MOHW in South Korea, and NIH R03AG070701 from the US, and Foundation of Hope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Hwa Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2311 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, J., Hwang, Y., Kim, M., Chung, M.K., Wu, G., Kim, W.H. (2023). Convolving Directed Graph Edges via Hodge Laplacian for Brain Network Analysis. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics