Skip to main content

MedIM: Boost Medical Image Representation via Radiology Report-Guided Masking

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14220))

  • 5811 Accesses

Abstract

Masked image modelling (MIM)-based pre-training shows promise in improving image representations with limited annotated data by randomly masking image patches and reconstructing them. However, random masking may not be suitable for medical images due to their unique pathology characteristics. This paper proposes Masked medical Image Modelling (MedIM), a novel approach, to our knowledge, the first research that masks and reconstructs discriminative areas guided by radiological reports, encouraging the network to explore the stronger semantic representations from medical images. We introduce two mutual comprehensive masking strategies, knowledge word-driven masking (KWM) and sentence-driven masking (SDM). KWM uses Medical Subject Headings (MeSH) words unique to radiology reports to identify discriminative cues mapped to MeSH words and guide the mask generation. SDM considers that reports usually have multiple sentences, each of which describes different findings, and therefore integrates sentence-level information to identify discriminative regions for mask generation. MedIM integrates both strategies by simultaneously restoring the images masked by KWM and SDM for a more robust and representative medical visual representation. Our extensive experiments on various downstream tasks covering multi-label/class image classification, medical image segmentation, and medical image-text analysis, demonstrate that MedIM with report-guided masking achieves competitive performance. Our method substantially outperforms ImageNet pre-training, MIM-based pre-training, and medical image-report pre-training counterparts. Codes are available at https://github.com/YtongXie/MedIM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siim-acr pneumothorax segmentation. Society for Imaging Informatics in Medicine (2019)

    Google Scholar 

  2. Alsentzer, E., et al.: Publicly available clinical BERT embeddings. arXiv preprint arXiv:1904.03323 (2019)

  3. Bao, H., Dong, L., Piao, S., Wei, F.: Beit: BERT pre-training of image transformers. In: International Conference on Learning Representations (ICLR) (2022)

    Google Scholar 

  4. Cai, Z., Lin, L., He, H., Tang, X.: Uni4Eye: unified 2D and 3D self-supervised pre-training via masked image modeling transformer for ophthalmic image classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 88–98. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_9

    Chapter  Google Scholar 

  5. Chen, Z., Agarwal, D., Aggarwal, K., Safta, W., Balan, M.M., Brown, K.: Masked image modeling advances 3D medical image analysis. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1970–1980 (2023)

    Google Scholar 

  6. Chen, Z., et al.: Multi-modal masked autoencoders for medical vision-and-language pre-training. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 679–689. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_65

    Chapter  Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  8. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  9. Huang, S.C., Shen, L., Lungren, M.P., Yeung, S.: Gloria: a multimodal global-local representation learning framework for label-efficient medical image recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3942–3951 (2021)

    Google Scholar 

  10. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 590–597 (2019)

    Google Scholar 

  11. Jiang, J., Tyagi, N., Tringale, K., Crane, C., Veeraraghavan, H.: Self-supervised 3D anatomy segmentation using self-distilled masked image transformer (smit). In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 556–566. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_53

    Chapter  Google Scholar 

  12. Johnson, A.E., et al.: Mimic-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci. Data 6(1), 1–8 (2019)

    Google Scholar 

  13. Johnson, A.E., et al.: Mimic-III, a freely accessible critical care database. Sci. Data 3(1), 1–9 (2016)

    Google Scholar 

  14. Lipscomb, C.E.: Medical subject headings (mesh). Bull. Med. Libr. Assoc. 88(3), 265 (2000)

    Google Scholar 

  15. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: ICLR (2017)

    Google Scholar 

  16. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in Adam (2018)

    Google Scholar 

  17. Wang, F., Zhou, Y., Wang, S., Vardhanabhuti, V., Yu, L.: Multi-granularity cross-modal alignment for generalized medical visual representation learning. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  18. Wang, L., Lin, Z.Q., Wong, A.: COVID-net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest x-ray images. Sci. Rep. 10(1), 1–12 (2020)

    Google Scholar 

  19. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

  20. Xiao, J., Bai, Y., Yuille, A., Zhou, Z.: Delving into masked autoencoders for multi-label thorax disease classification. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3588–3600 (2023)

    Google Scholar 

  21. Xie, Y., Zhang, J., Xia, Y., Wu, Q.: UniMISS: universal medical self-supervised learning via breaking dimensionality barrier. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13681, pp. 558–575. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19803-8_33

    Chapter  Google Scholar 

  22. Zhou, H.Y., Lian, C., Wang, L., Yu, Y.: Advancing radiograph representation learning with masked record modeling. In: International Conference on Learning Representations (ICLR) (2023)

    Google Scholar 

  23. Zhou, J., et al.: Image BERT pre-training with online tokenizer. In: International Conference on Learning Representations (ICLR) (2022)

    Google Scholar 

  24. Zhou, L., Liu, H., Bae, J., He, J., Samaras, D., Prasanna, P.: Self pre-training with masked autoencoders for medical image analysis. arXiv preprint arXiv:2203.05573 (2022)

Download references

Acknowledgments

Dr. Lin Gu was supported by JST Moonshot R &D Grant Number JPMJMS2011, Japan. Prof. Yong Xia was supported in part by the Key Research and Development Program of Shaanxi Province, China, under Grant 2022GY-084, in part by the National Natural Science Foundation of China under Grants 62171377, and in part by the National Key R &D Program of China under Grant 2022YFC2009903/2022YFC2009900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 345 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, Y., Gu, L., Harada, T., Zhang, J., Xia, Y., Wu, Q. (2023). MedIM: Boost Medical Image Representation via Radiology Report-Guided Masking. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics