Skip to main content

Gall Bladder Cancer Detection from US Images with only Image Level Labels

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14220))

Abstract

Automated detection of Gallbladder Cancer (GBC) from Ultrasound (US) images is an important problem, which has drawn increased interest from researchers. However, most of these works use difficult-to-acquire information such as bounding box annotations or additional US videos. In this paper, we focus on GBC detection using only image-level labels. Such annotation is usually available based on the diagnostic report of a patient, and do not require additional annotation effort from the physicians. However, our analysis reveals that it is difficult to train a standard image classification model for GBC detection. This is due to the low inter-class variance (a malignant region usually occupies only a small portion of a US image), high intra-class variance (due to the US sensor capturing a 2D slice of a 3D object leading to large viewpoint variations), and low training data availability. We posit that even when we have only the image level label, still formulating the problem as object detection (with bounding box output) helps a deep neural network (DNN) model focus on the relevant region of interest. Since no bounding box annotations is available for training, we pose the problem as weakly supervised object detection (WSOD). Motivated by the recent success of transformer models in object detection, we train one such model, DETR, using multi-instance-learning (MIL) with self-supervised instance selection to suit the WSOD task. Our proposed method demonstrates an improvement of AP and detection sensitivity over the SOTA transformer-based and CNN-based WSOD methods. Project page is at https://gbc-iitd.github.io/wsod-gbc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, S., et al.: A multi-centre polyp detection and segmentation dataset for generalisability assessment. Scientific Data 10(1), 75 (2023)

    Article  MathSciNet  Google Scholar 

  2. Bai, H., Zhang, R., Wang, J., Wan, X.: Weakly supervised object localization via transformer with implicit spatial calibration. In: ECCV. pp. 612–628. Springer (2022). https://doi.org/10.1007/978-3-031-20077-9_36

  3. Basu, S., Gupta, M., Rana, P., Gupta, P., Arora, C.: Surpassing the human accuracy: Detecting gallbladder cancer from USG images with curriculum learning. In: CVPR, pp. 20886–20896 (2022)

    Google Scholar 

  4. Basu, S., Gupta, M., Rana, P., Gupta, P., Arora, C.: Radformer: transformers with global-local attention for interpretable and accurate gallbladder cancer detection. Med. Image Anal. 83, 102676 (2023)

    Article  Google Scholar 

  5. Basu, S., Singla, S., Gupta, M., Rana, P., Gupta, P., Arora, C.: Unsupervised contrastive learning of image representations from ultrasound videos with hard negative mining. In: MICCAI, pp. 423–433. Springer (2022). https://doi.org/10.1007/978-3-031-16440-8_41

  6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  7. Chen, Y., et al.: USCL: pretraining deep ultrasound image diagnosis model through video contrastive representation learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 627–637. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_60

    Chapter  Google Scholar 

  8. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)

    Article  MATH  Google Scholar 

  9. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  10. Gao, W., et al.: Ts-cam: Token semantic coupled attention map for weakly supervised object localization. In: ICCV, pp. 2886–2895 (2021)

    Google Scholar 

  11. Gupta, P.: Imaging-based algorithmic approach to gallbladder wall thickening. World J. Gastroenterol. 26(40), 6163 (2020)

    Article  Google Scholar 

  12. Gupta, P., et al.: Locally advanced gallbladder cancer: a review of the criteria and role of imaging. Abdominal Radiol. 46(3), 998–1007 (2021)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  14. Hong, E.K., et al.: Surgical outcome and prognostic factors in patients with gallbladder carcinoma. Ann. Hepato-Biliary-Pancreat. Surg. 18(4), 129–137 (2014)

    Article  MathSciNet  Google Scholar 

  15. Howlader, N., et al.: Seer cancer statistics review, 1975–2014, national cancer institute, pp. 1–12. Bethesda, MD pp (2017)

    Google Scholar 

  16. Jha, D., et al.: Real-time polyp detection, localization and segmentation in colonoscopy using deep learning. IEEE Access 9, 40496–40510 (2021)

    Article  Google Scholar 

  17. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  18. Ji, H., et al.: Point beyond class: A benchmark for weakly semi-supervised abnormality localization in chest x-rays. In: MICCAI. pp. 249–260. Springer (2022). https://doi.org/10.1007/978-3-031-16437-8_24

  19. LaBonte, T., Song, Y., Wang, X., Vineet, V., Joshi, N.: Scaling novel object detection with weakly supervised detection transformers. In: WACV, pp. 85–96 (2023)

    Google Scholar 

  20. Qian, Z., et al.: Transformer based multiple instance learning for weakly supervised histopathology image segmentation. In: MICCAI, pp. 160–170. Springer Nature Switzerland Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_16

  21. Seo, J., Bae, W., Sutherland, D.J., Noh, J., Kim, D.: Object discovery via contrastive learning for weakly supervised object detection. In: ECCV, pp. 312–329. Springer (2022). https://doi.org/10.1007/978-3-031-19821-2_18

  22. Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X., et al.: Transmil: transformer based correlated multiple instance learning for whole slide image classification. NeurIPS 34, 2136–2147 (2021)

    Google Scholar 

  23. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  24. Tang, P., Wang, X., Bai, X., Liu, W.: Multiple instance detection network with online instance classifier refinement. In: CVPR, pp. 2843–2851 (2017)

    Google Scholar 

  25. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: ICML, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  26. Wang, W., et al.: Pvtv 2: Improved baselines with pyramid vision transformer (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Basu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 319 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basu, S., Papanai, A., Gupta, M., Gupta, P., Arora, C. (2023). Gall Bladder Cancer Detection from US Images with only Image Level Labels. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics