Skip to main content

CL-ADDA: Contrastive Learning with Amplitude-Driven Data Augmentation for fMRI-Based Individualized Predictions

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14220))

  • 7767 Accesses

Abstract

Effective representations of human brain function are essential for fMRI-based predictions of individual traits and classifications of neuropsychiatric disorders. Contrastive learning techniques can be favorable choices for representations of human brain function, if it were not for their requirement of large batch sizes. In this study, we proposed a novel method, namely, contrastive learning with amplitude-driven data augmentation (CL-ADDA), for effective representations of human brain function and ultimately fMRI-based individualized predictions. SimSiam, which sets no requirement on large batches, was used in this study to obtain discriminative representations among subjects to facilitate later predictions of individuals’ traits. The fMRI data in this study was augmented based on recent neuroscience findings that fMRI frames with high- and low-amplitude are of quite different functional significance. Accordingly, we generated a positive pair by concatenating the fMRI frames with high-amplitude into one augmented sample and the frames with low-amplitude into another sample. The two augmented samples were used as inputs for CL-ADDA, and individualized predictions were made in an end-to-end way. The performance of the proposed CL-ADDA was evaluated with individualized age and IQ predictions based on a public dataset (Cam-CAN). The experimental results demonstrate that the proposed CL-ADDA can substantially improve the prediction performance as compared to the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  2. Barlow, H.B.: Possible principles underlying the transformation of sensory messages. Sens. Commun. 1(01), 217–233 (1961)

    Google Scholar 

  3. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., et al.: Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural. Inf. Process. Syst. 33, 9912–9924 (2020)

    Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  5. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 15750–15758 (2021)

    Google Scholar 

  6. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  7. Dufumier, B., Gori, P., Victor, J., Grigis, A., Wessa, M., Brambilla, P., Favre, P., Polosan, M., McDonald, C., Piguet, C.M., Phillips, M., Eyler, L., Duchesnay, E.: Contrastive learning with continuous proxy meta-data for 3D MRI classification. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 58–68. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_6

    Chapter  Google Scholar 

  8. Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M.: Spatio-temporal graph convolution for resting-state fMRI analysis. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 528–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_52

    Chapter  Google Scholar 

  9. Grigis, A., Gomez, C., Tasserie, J., Ambroise, C., Frouin, V., et al.: Predicting cortical signatures of consciousness using dynamic functional connectivity graph-convolutional neural networks. BioRxiv, pp. 2020–2005 (2020)

    Google Scholar 

  10. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  11. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9729–9738 (2020)

    Google Scholar 

  12. He, T., Kong, R., Holmes, A.J., Nguyen, M., Sabuncu, M.R., et al.: Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics. Neuroimage 206, 116276 (2020)

    Article  Google Scholar 

  13. Hsieh, W.T., Lefort-Besnard, J., Yang, H.C., Kuo, L.W., Lee, C.C.: Behavior score-embedded brain encoder network for improved classification of Alzheimer disease using resting state fMRI. In: International Conference of the IEEE Engineering in Medicine & Biology Society, pp. 5486–5489. IEEE (2020)

    Google Scholar 

  14. Kawahara, J., Brown, C.J., Miller, S.P., Booth, B.G., Chau, V., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage 146, 1038–1049 (2017)

    Article  Google Scholar 

  15. Li, J., Zhao, G., Tao, Y., Zhai, P., Chen, H., et al.: Multi-task contrastive learning for automatic CT and X-ray diagnosis of COVID-19. Pattern Recogn. 114, 107848 (2021)

    Article  Google Scholar 

  16. Li, X., Zhou, Y., Dvornek, N.C., Zhang, M., Zhuang, J., Ventola, P., Duncan, J.S.: Pooling regularized graph neural network for fmri biomarker analysis. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 625–635. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_61

    Chapter  Google Scholar 

  17. Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., et al.: Braingnn: interpretable brain graph neural network for FMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  18. Peng, H., Gong, W., Beckmann, C.F., Vedaldi, A., Smith, S.M.: Accurate brain age prediction with lightweight deep neural networks. Med. Image Anal. 68, 101871 (2021)

    Article  Google Scholar 

  19. Taylor, J.R., Williams, N., Cusack, R., Auer, T., Shafto, M.A., et al.: The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. Neuroimage 144, 262–269 (2017)

    Article  Google Scholar 

  20. Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.E., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  21. Wang, X., Yao, L., Rekik, I., Zhang, Y.: Contrastive functional connectivity graph learning for population-based fMRI classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13431, pp. 221–230. Springer, Cham.https://doi.org/10.1007/978-3-031-16431-6_21

  22. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence vol. 32, no. 1 (2018)

    Google Scholar 

  23. Zamani Esfahlani, F., Jo, Y., Faskowitz, J., Byrge, L., Kennedy, D.P., et al.: High-amplitude cofluctuations in cortical activity drive functional connectivity. Proc. Natl. Acad. Sci. 117(45), 28393–28401 (2020)

    Article  Google Scholar 

  24. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: Self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320. PMLR (2021)

    Google Scholar 

  25. Zhao, Z., Liu, H.: Semi-supervised feature selection via spectral analysis. In: Proceedings of the SIAM international conference on data mining. pp. 641−646. Society for Industrial and Applied Mathematics (2007)

    Google Scholar 

Download references

Acknowledgement

We thank investigators from Cambridge Centre for Ageing and Neuroscience for sharing the public dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixia Tian .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 90 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Xu, L., Guan, Y., Ma, H., Tian, L. (2023). CL-ADDA: Contrastive Learning with Amplitude-Driven Data Augmentation for fMRI-Based Individualized Predictions. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics