Skip to main content

Self-Supervised Domain Adaptive Segmentation of Breast Cancer via Test-Time Fine-Tuning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14220))

  • 5357 Accesses

Abstract

Unsupervised domain adaptation (UDA) has become increasingly popular in imaging-based diagnosis due to the challenge of labeling a large number of datasets in target domains. Without labeled data, well-trained deep learning models in a source domain may not perform well when applied to a target domain. UDA allows for the use of large-scale datasets from various domains for model deployment, but it can face difficulties in performing adaptive feature extraction when dealing with unlabeled data in an unseen target domain. To address this, we propose an advanced test-time fine-tuning UDA framework designed to better utilize the latent features of datasets in the unseen target domain by fine-tuning the model itself during diagnosis. Our proposed framework is based on an auto-encoder-based network architecture that fine-tunes the model itself. This allows our framework to learn knowledge specific to the unseen target domain during the fine-tuning phase. In order to further optimize our framework for the unseen target domain, we introduce a re-initialization module that injects randomness into network parameters. This helps the framework to converge to a local minimum that is better-suited for the target domain, allowing for improved performance in domain adaptation tasks. To evaluate our framework, we carried out experiments on UDA segmentation tasks using breast cancer datasets acquired from multiple domains. Our experimental results demonstrated that our framework achieved state-of-the-art performance, outperforming other competing UDA models, in segmenting breast cancer on ultrasound images from an unseen domain, which supports its clinical potential for improving breast cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)

    Article  Google Scholar 

  2. Badawy, S.M., Mohamed, A.E.N.A., Hefnawy, A.A., Zidan, H.E., GadAllah, M.T., El-Banby, G.M.: Automatic semantic segmentation of breast tumors in ultrasound images based on combining fuzzy logic and deep learning-a feasibility study. PLoS ONE 16(5), e0251899 (2021)

    Article  Google Scholar 

  3. Barbato, F., Toldo, M., Michieli, U., Zanuttigh, P.: Latent space regularization for unsupervised domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2835–2845 (2021)

    Google Scholar 

  4. Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., Ayed, I.B.: Source-free domain adaptation for image segmentation. Med. Image Anal. 82, 102617 (2022)

    Article  Google Scholar 

  5. van Beers, F., Lindström, A., Okafor, E., Wiering, M.A.: Deep neural networks with intersection over union loss for binary image segmentation. In: ICPRAM, pp. 438–445 (2019)

    Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173–1185 (2021)

    Article  Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  9. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  10. Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F.: Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2(6), 305–311 (2020)

    Article  Google Scholar 

  11. Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 68, 101907 (2021)

    Article  Google Scholar 

  12. Kouw, W.M., Loog, M.: An introduction to domain adaptation and transfer learning. arXiv preprint arXiv:1812.11806 (2018)

  13. Kundu, J.N., Kulkarni, A., Singh, A., Jampani, V., Babu, R.V.: Generalize then adapt: source-free domain adaptive semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7046–7056 (2021)

    Google Scholar 

  14. Lee, H., Park, J., Hwang, J.Y.: Channel attention module with multi-scale grid average pooling for breast cancer segmentation in an ultrasound image. Ferroelectrics, and Frequency Control, IEEE Transactions on Ultrasonics (2020)

    Google Scholar 

  15. Lee, M.H., Kim, J.Y., Lee, K., Choi, C.H., Hwang, J.Y.: Wide-field 3D ultrasound imaging platform with a semi-automatic 3D segmentation algorithm for quantitative analysis of rotator cuff tears. IEEE Access 8, 65472–65487 (2020)

    Article  Google Scholar 

  16. Lee, S., Hyun, J., Seong, H., Kim, E.: Unsupervised domain adaptation for semantic segmentation by content transfer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8306–8315 (2021)

    Google Scholar 

  17. Liang, J., He, R., Sun, Z., Tan, T.: Exploring uncertainty in pseudo-label guided unsupervised domain adaptation. Pattern Recogn. 96, 106996 (2019)

    Article  Google Scholar 

  18. Lin, Z., Lin, J., Zhu, L., Fu, H., Qin, J., Wang, L.: A new dataset and a baseline model for breast lesion detection in ultrasound videos. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 614–623. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_59

  19. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  20. Nam, H., Lee, H., Park, J., Yoon, W., Yoo, D.: Reducing domain gap by reducing style bias. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8690–8699 (2021)

    Google Scholar 

  21. Quan, T.M., Hildebrand, D.G., Jeong, W.K.: FusionNet: a deep fully residual convolutional neural network for image segmentation in connectomics. arXiv preprint arXiv:1612.05360 (2016)

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Roy, S., Trapp, M., Pilzer, A., Kannala, J., Sebe, N., Ricci, E., Solin, A.: Uncertainty-guided source-free domain adaptation. In: Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXV. pp. 537–555. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19806-9_31

  24. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  25. Sun, Y., Tzeng, E., Darrell, T., Efros, A.A.: Unsupervised domain adaptation through self-supervision. arXiv preprint arXiv:1909.11825 (2019)

  26. Toldo, M., Maracani, A., Michieli, U., Zanuttigh, P.: Unsupervised domain adaptation in semantic segmentation: a review. Technologies 8(2), 35 (2020)

    Article  Google Scholar 

  27. Vakanski, A., Xian, M., Freer, P.E.: Attention-enriched deep learning model for breast tumor segmentation in ultrasound images. Ultrasound Med. Biol. 46(10), 2819–2833 (2020)

    Article  Google Scholar 

  28. Wang, J., et al.: Information bottleneck-based interpretable multitask network for breast cancer classification and segmentation. Med. Image Anal., 102687 (2022)

    Google Scholar 

  29. Wang, Q., Fink, O., Van Gool, L., Dai, D.: Continual test-time domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7201–7211 (2022)

    Google Scholar 

  30. Wang, Y., Yao, Y.: Breast lesion detection using an anchor-free network from ultrasound images with segmentation-based enhancement. Sci. Rep. 12(1), 1–12 (2022)

    Google Scholar 

  31. Xu, J., Xiao, L., López, A.M.: Self-supervised domain adaptation for computer vision tasks. IEEE Access 7, 156694–156706 (2019)

    Article  Google Scholar 

  32. Yap, M.H., et al.: Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 22(4), 1218–1226 (2017)

    Article  Google Scholar 

  33. Zou, Y., Yu, Z., Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 289–305 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: 1711174564, RS-2022-00141185). Also, this work was partially supported by the Technology Innovation Program(20014214) funded By the Ministry of Trade, Industry & Energy(MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Youn Hwang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 933 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, K., Lee, H., El Fakhri, G., Woo, J., Hwang, J.Y. (2023). Self-Supervised Domain Adaptive Segmentation of Breast Cancer via Test-Time Fine-Tuning. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics