Skip to main content

Decoupled Consistency for Semi-supervised Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14220))

  • 5652 Accesses

Abstract

By fully utilizing unlabeled data, the semi-supervised learning (SSL) technique has recently produced promising results in the segmentation of medical images. Pseudo labeling and consistency regularization are two effective strategies for using unlabeled data. Yet, the traditional pseudo labeling method will filter out low-confidence pixels. The advantages of both high- and low-confidence data are not fully exploited by consistency regularization. Therefore, neither of these two methods can make full use of unlabeled data. We proposed a novel decoupled consistency semi-supervised medical image segmentation framework. First, the dynamic threshold is utilized to decouple the prediction data into consistent and inconsistent parts. For the consistent part, we use the method of cross pseudo supervision to optimize it. For the inconsistent part, we further decouple it into unreliable data that is likely to occur close to the decision boundary and guidance data that is more likely to emerge near the high-density area. Unreliable data will be optimized in the direction of guidance data. We refer to this action as directional consistency. Furthermore, in order to fully utilize the data, we incorporate feature maps into the training process and calculate the loss of feature consistency. A significant number of experiments have demonstrated the superiority of our proposed method. The code is available at https://github.com/wxfaaaaa/DCNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masood, S., Sharif, M., Masood, A., Yasmin, M., Raza, M.: A survey on medical image segmentation. Curr. Med. Imaging 11(1), 3–14 (2015)

    Article  Google Scholar 

  2. Li, X., Yu, L., Chen, H., Fu, C.W., Xing, L., Heng, P.A.: Transformation-consistent self-ensembling model for semisupervised medical image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 523–534 (2020)

    Article  Google Scholar 

  3. Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-supervised image recognition. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 135–152 (2018)

    Google Scholar 

  4. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  5. Zhou, Y., et al.: Semi-supervised 3d abdominal multi-organ segmentation via deep multi-planar co-training. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 121–140. IEEE (2019)

    Google Scholar 

  6. Xia, Y., et al.: 3D semi-supervised learning with uncertainty-aware multi-view co-training. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3646–3655 (2020)

    Google Scholar 

  7. Ouali, Y., Hudelot, C., Tami, M.: Semi-supervised semantic segmentation with cross-consistency training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12674–12684 (2020)

    Google Scholar 

  8. Ke, Z., Qiu, D., Li, K., Yan, Q., Lau, R.W.H.: Guided collaborative training for pixel-wise semi-supervised learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 429–445. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_26

    Chapter  Google Scholar 

  9. Kim, J., Jang, J., Park, H.: Structured consistency loss for semi-supervised semantic segmentation. arXiv preprint arXiv:2001.04647 (2020)

  10. French, G., Aila, T., Laine, S., Mackiewicz, M., Finlayson, G.: Semi-supervised semantic segmentation needs strong, high-dimensional perturbations (2019)

    Google Scholar 

  11. Masood, S., et al.: Automatic choroid layer segmentation from optical coherence tomography images using deep learning. Sci. Rep. 9(1), 1–18 (2019)

    MathSciNet  Google Scholar 

  12. Wang, Y., et al.: Semi-supervised semantic segmentation using unreliable pseudo-labels supplementary material (2022)

    Google Scholar 

  13. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  14. Litjens, G., et al.: Evaluation of prostate segmentation algorithms for MRI: the promise12 challenge. Med. Image Anal. 18(2), 359–373 (2014)

    Article  Google Scholar 

  15. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 896 (2013)

    Google Scholar 

  16. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  17. Rizve, M.N., Duarte, K., Rawat, Y.S., Shah, M.: In defense of pseudo-labeling: an uncertainty-aware pseudo-label selection framework for semi-supervised learning. arXiv preprint arXiv:2101.06329 (2021)

  18. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622 (2021)

    Google Scholar 

  19. Bachman, P., Alsharif, O., Precup, D.: Learning with pseudo-ensembles. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  20. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: Advances in Neural Information Processing Systems 29 (2016)

    Google Scholar 

  21. Bortsova, G., Dubost, F., Hogeweg, L., Katramados, I., de Bruijne, M.: Semi-supervised medical image segmentation via learning consistency under transformations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 810–818. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_90

    Chapter  Google Scholar 

  22. Xu, Y., et al.: Dash: Semi-supervised learning with dynamic thresholding. In: International Conference on Machine Learning, pp. 11525–11536. PMLR (2021)

    Google Scholar 

  23. Zhang, B., et al.: FlexMatch: boosting semi-supervised learning with curriculum pseudo labeling. Adv. Neural. Inf. Process. Syst. 34, 18408–18419 (2021)

    Google Scholar 

  24. Wang, Y., et al.: FreeMatch: self-adaptive thresholding for semi-supervised learning. arXiv preprint arXiv:2205.07246 (2022)

  25. Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8801–8809 (2021)

    Google Scholar 

  26. Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 297–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28

    Chapter  Google Scholar 

  27. Wu, Y., Wu, Z., Wu, Q., Ge, Z., Cai, J.: Exploring smoothness and class-separation for semi-supervised medical image segmentation. arXiv preprint arXiv:2203.01324 (2022)

  28. Luo, X., et al.: Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 318–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_30

    Chapter  Google Scholar 

  29. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 62002304), and also by Anhui Province KevLaboratory of Translational Cancer Research (KFKT 202308), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenxi Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 131 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, F., Fei, J., Chen, Y., Huang, C. (2023). Decoupled Consistency for Semi-supervised Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics