Skip to main content

Masked Frequency Consistency for Domain-Adaptive Semantic Segmentation of Laparoscopic Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14220))

  • 7950 Accesses

Abstract

Semantic segmentation of laparoscopic images is an important issue for intraoperative guidance in laparoscopic surgery. However, acquiring and annotating laparoscopic datasets is labor-intensive, which limits the research on this topic. In this paper, we tackle the Domain-Adaptive Semantic Segmentation (DASS) task, which aims to train a segmentation network using only computer-generated simulated images and unlabeled real images. To bridge the large domain gap between generated and real images, we propose a Masked Frequency Consistency (MFC) module that encourages the network to learn frequency-related information of the target domain as additional cues for robust recognition. Specifically, MFC randomly masks some high-frequency information of the image to improve the consistency of the network’s predictions for low-frequency images and real images. We conduct extensive experiments on existing DASS frameworks with our MFC module and show performance improvements. Our approach achieves comparable results to fully supervised learning method on the CholecSeg8K dataset without using any manual annotation. The code is available at github.com/MoriLabNU/MFC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aklilu, J., Yeung, S.: ALGES: active learning with gradient embeddings for semantic segmentation of laparoscopic surgical images. In: Proceedings of Machine Learning for Healthcare, pp. 892–911. PMLR (2022)

    Google Scholar 

  2. Araslanov, N., Roth, S.: Self-supervised augmentation consistency for adapting semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15384–15394. IEEE (2021)

    Google Scholar 

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(04), 834–848 (2018)

    Article  Google Scholar 

  4. Contributors, M.: MMSegmentation: openmmlab semantic segmentation toolbox and benchmark (2020). https://github.com/open-mmlab/mmsegmentation

  5. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009. IEEE (2022)

    Google Scholar 

  6. Hong, W.Y., Kao, C.L., Kuo, Y.H., Wang, J.R., Chang, W.L., Shih, C.S.: CholecSeg8k: a semantic segmentation dataset for laparoscopic cholecystectomy based on Cholec80. arXiv preprint arXiv:2012.12453 (2020)

  7. Hoyer, L., Dai, D., Van Gool, L.: DaFormer: improving network architectures and training strategies for domain-adaptive semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9924–9935. IEEE (2022)

    Google Scholar 

  8. Hoyer, L., Dai, D., Van Gool, L.: HRDA: context-aware high-resolution domain-adaptive semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13690, pp. 372–391. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20056-4_22

  9. Hoyer, L., Dai, D., Wang, H., Van Gool, L.: MIC: masked image consistency for context-enhanced domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11721–11732. IEEE (2023)

    Google Scholar 

  10. Hu, S., Liao, Z., Xia, Y.: Domain specific convolution and high frequency reconstruction based unsupervised domain adaptation for medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 650–659. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_62

  11. Liu, J., Guo, X., Yuan, Y.: Prototypical interaction graph for unsupervised domain adaptation in surgical instrument segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 272–281. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_26

    Chapter  Google Scholar 

  12. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1013–1023. IEEE (2021)

    Google Scholar 

  13. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  14. Lyu, J., Zhang, Y., Huang, Y., Lin, L., Cheng, P., Tang, X.: AADG: automatic augmentation for domain generalization on retinal image segmentation. IEEE Trans. Med. Imaging 41(12), 3699–3711 (2022)

    Article  Google Scholar 

  15. Madani, A., et al.: Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann. Surg. 276(2), 363–369 (2022)

    Article  Google Scholar 

  16. Nussbaumer, H.J., Nussbaumer, H.J.: The fast fourier transform. Fast Fourier Transform and Convolution Algorithms, pp. 80–111 (1982)

    Google Scholar 

  17. Pfeiffer, M., et al.: Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_14

    Chapter  Google Scholar 

  18. Qiu, J., Hayashi, Y., Oda, M., Kitasaka, T., Mori, K.: Class-wise confidence-aware active learning for laparoscopic images segmentation. Inter. J. Comput. Assisted Radiol. Surgery, 1–10 (2022)

    Google Scholar 

  19. Sahu, M., Mukhopadhyay, A., Zachow, S.: Simulation-to-real domain adaptation with teacher-student learning for endoscopic instrument segmentation. Int. J. Comput. Assist. Radiol. Surg. 16(5), 849–859 (2021)

    Article  Google Scholar 

  20. Sahu, M., Strömsdörfer, R., Mukhopadhyay, A., Zachow, S.: Endo-Sim2Real: consistency learning-based domain adaptation for instrument segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 784–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_75

    Chapter  Google Scholar 

  21. Silva, B., et al.: Analysis of current deep learning networks for semantic segmentation of anatomical structures in laparoscopic surgery. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3502–3505. IEEE (2022)

    Google Scholar 

  22. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  23. Tranheden, W., Olsson, V., Pinto, J., Svensson, L.: DACS: domain adaptation via cross-domain mixed sampling. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1379–1389 (2021)

    Google Scholar 

  24. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M., Padoy, N.: Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2016)

    Article  Google Scholar 

  25. Way, L.W., et al.: Causes and prevention of laparoscopic bile duct injuries: analysis of 252 cases from a human factors and cognitive psychology perspective. Ann. Surg. 237(4), 460–469 (2003)

    Article  Google Scholar 

  26. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. Adv. Neural. Inf. Process. Syst. 34, 12077–12090 (2021)

    Google Scholar 

  27. Yang, Y., Soatto, S.: FDA: fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4085–4095. IEEE (2020)

    Google Scholar 

  28. Zakazov, I., Shaposhnikov, V., Bespalov, I., Dylov, D.V.: Feather-light fourier domain adaptation in magnetic resonance imaging. In: Kamnitsas, K., et al. (eds.) DART 2022. LNCS, vol. 13542, pp. 88–97. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16852-9_9

  29. Zhou, Q., et al.: Context-aware mixup for domain adaptive semantic segmentation. IEEE Trans. Circuits Syst. Video Technol. 33, 804–817 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the JSPS KAKENHI Grant Numbers 17H00867, 21K19898, 26108006; in part by the JST CREST Grant Number JPMJCR20D5; and in part by the fellowship of the Nagoya University TMI WISE program from MEXT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinkai Zhao or Kensaku Mori .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 336 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X., Hayashi, Y., Oda, M., Kitasaka, T., Mori, K. (2023). Masked Frequency Consistency for Domain-Adaptive Semantic Segmentation of Laparoscopic Images. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics