Skip to main content

Black-box Domain Adaptative Cell Segmentation via Multi-source Distillation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Cell segmentation plays a critical role in diagnosing various cancers. Although deep learning techniques have been widely investigated, the enormous types and diverse appearances of histopathological cells still pose significant challenges for clinical applications. Moreover, data protection policies in different clinical centers and hospitals limit the training of data-dependent deep models. In this paper, we present a novel framework for cross-tissue domain adaptative cell segmentation without access both source domain data and model parameters, namely Multi-source Black-box Domain Adaptation (MBDA). Given the target domain data, our framework can achieve the cell segmentation based on knowledge distillation, by only using the outputs of models trained on multiple source domain data. Considering the domain shift cross different pathological tissues, predictions from the source models may not be reliable, where the noise labels can limit the training of the target model. To address this issue, we propose two practical approaches for weighting knowledge from the multi-source model predictions and filtering out noisy predictions. First, we assign pixel-level weights to the outputs of source models to reduce uncertainty during knowledge distillation. Second, we design a pseudo-label cutout and selection strategy for these predictions to facilitate the knowledge distillation from local cells to global pathological images. Experimental results on four types of pathological tissues demonstrate that our proposed black-box domain adaptation approach can achieve comparable and even better performance in comparison with state-of-the-art white-box approaches. The code and dataset are released at: https://github.com/NeuronXJTU/MBDA-CellSeg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, S.M., Raychaudhuri, D.S., Paul, S., Oymak, S., Roy-Chowdhury, A.K.: Unsupervised multi-source domain adaptation without access to source data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10103–10112 (2021)

    Google Scholar 

  2. Awan, R., et al.: Glandular morphometrics for objective grading of colorectal adenocarcinoma histology images. Sci. Rep. 7(1), 16852 (2017)

    Article  Google Scholar 

  3. Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., Ben Ayed, I.: Source-relaxed domain adaptation for image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 490–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_48

    Chapter  Google Scholar 

  4. Carlini, N., et al.: Extracting training data from large language models. In: USENIX Security Symposium, vol. 6 (2021)

    Google Scholar 

  5. Chen, C., Liu, Q., Jin, Y., Dou, Q., Heng, P.-A.: Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 225–235. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_22

    Chapter  Google Scholar 

  6. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  7. Feng, H., et al.: Kd3a: unsupervised multi-source decentralized domain adaptation via knowledge distillation. In: ICML, pp. 3274–3283 (2021)

    Google Scholar 

  8. Haq, M.M., Huang, J.: Adversarial domain adaptation for cell segmentation. In: Medical Imaging with Deep Learning, pp. 277–287. PMLR (2020)

    Google Scholar 

  9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  10. Hou, L., et al.: Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types. Sci. Data 7(1), 185 (2020)

    Article  Google Scholar 

  11. Irshad, H., et al.: Crowdsourcing image annotation for nucleus detection and segmentation in computational pathology: evaluating experts, automated methods, and the crowd. In: Pacific Symposium on Biocomputing Co-chairs, pp. 294–305. World Scientific (2014)

    Google Scholar 

  12. Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual U-Net. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_40

    Chapter  Google Scholar 

  13. Li, Z., Togo, R., Ogawa, T., Haseyama, M.: Union-set multi-source model adaptation for semantic segmentation. In: Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXIX, pp. 579–595. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19818-2_33

  14. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 6028–6039. PMLR (2020)

    Google Scholar 

  15. Liang, J., Hu, D., Feng, J., He, R.: Dine: domain adaptation from single and multiple black-box predictors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8003–8013 (2022)

    Google Scholar 

  16. Liu, X., et al.: Adversarial unsupervised domain adaptation with conditional and label shift: Infer, align and iterate. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10367–10376 (2021)

    Google Scholar 

  17. Liu, X., et al.: Unsupervised black-box model domain adaptation for brain tumor segmentation. Front. Neurosci. 16, 837646 (2022)

    Article  Google Scholar 

  18. Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38(2), 448–459 (2018)

    Article  Google Scholar 

  19. Scherr, T., Löffler, K., Böhland, M., Mikut, R.: Cell segmentation and tracking using cnn-based distance predictions and a graph-based matching strategy. Plos One 15(12), e0243219 (2020)

    Article  Google Scholar 

  20. Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan. Infer. 90(2), 227–244 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xie, B., Yuan, L., Li, S., Liu, C.H., Cheng, X.: Towards fewer annotations: active learning via region impurity and prediction uncertainty for domain adaptive semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8068–8078 (2022)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under grant No. 61902310 and the Natural Science Basic Research Program of Shaanxi, China under grant 2020JQ030.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongyu Li or Cunbao Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X. et al. (2023). Black-box Domain Adaptative Cell Segmentation via Multi-source Distillation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics